Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zhaozhengChen/RegionEmbedding
Mxnet implementation of an ICLR 2018 paper: A new method of region embedding for text classification.
https://github.com/zhaozhengChen/RegionEmbedding
Last synced: 2 months ago
JSON representation
Mxnet implementation of an ICLR 2018 paper: A new method of region embedding for text classification.
- Host: GitHub
- URL: https://github.com/zhaozhengChen/RegionEmbedding
- Owner: zhaozhengChen
- Created: 2018-08-31T10:18:03.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-10-14T08:23:22.000Z (about 6 years ago)
- Last Synced: 2024-08-01T22:41:48.794Z (5 months ago)
- Language: Python
- Homepage:
- Size: 54.7 KB
- Stars: 10
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-MXNet - **RegionEmbedding**
README
# RegionEmbedding
MXNet implementation of ICLR 2018 paper: [A new method of region embedding for text classification](https://openreview.net/forum?id=BkSDMA36Z).Official implementation in [TensorFlow](https://github.com/text-representation/local-context-unit).
## 0.Notes
- I implemented both Word-Context and Context-Word Region Embedding in the paper.
- Please see the original papar about the datasets and pre-pocessing.
- All the hyper-parameters I used are copied from the official implementation.
## 1.Requirements- Python2 or Python3
- Mxnet 1.2.1
## 2.Results|Datasets| Accuracy(%)
WordContext|Best Epoch
WordContext|Accuracy(%)
ContextWord|Best Epoch
ContextWord|Running Time
Per Epoch(mins)
| :-- | :--: | :--: | :--: | :--: | :--: |
|Yahoo Answer|73.07(73.7)|2|73.42(73.4)|3|110|
|Amazon Polarity|95.27(95.1)|2|95.36(95.3)|3|247|
|Amazon Full|61.58(60.9)|2|61.59(60.8)|2|183|
|Ag news| 92.96(92.8)|6|92.89(92.8)|8|2|
|DBPedia|98.91(98.9)|4|98.88(98.9)|3|23|
|Yelp Full| 64.98(64.9)|3|64.94(64.5)|2|25|Note:
- The accuracy in brackets are results reported in the original paper.
- The running speed is much faster than the origin implementation in Tensorflow.
The running time was tested on the model of context-word region embedding, which run roughly the same as the word-context region embedding.
- The code run on a Titan Xp GPU.