Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zhijing-jin/arts_testset
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.
https://github.com/zhijing-jin/arts_testset
Last synced: 2 months ago
JSON representation
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.
- Host: GitHub
- URL: https://github.com/zhijing-jin/arts_testset
- Owner: zhijing-jin
- Created: 2020-06-14T20:06:07.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-01-16T17:23:22.000Z (about 1 year ago)
- Last Synced: 2024-01-17T01:58:25.370Z (about 1 year ago)
- Language: Python
- Size: 4.09 MB
- Stars: 41
- Watchers: 3
- Forks: 4
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
This is the repository for our paper
"[**Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis**](https://arxiv.org/pdf/2009.07964)" **(EMNLP 2020)**.Authors: [Xiaoyu Xing](https://scholar.google.ru/citations?user=gC7UghIAAAAJ&hl=en)\*, [Zhijing Jin](https://zhijing-jin.com)\*, [Di Jin](https://jind11.github.io/), [Bingning Wang](https://bingning.wang/research/aboutme), [Qi Zhang](http://qizhang.info/), and [Xuanjing Huang](https://xuanjing-huang.github.io/).
## Data
We provide a **Aspect Robustness Probing** test set for [SemEval 2014](http://alt.qcri.org/semeval2014/task4/) Aspect-Based Sentiment Analysis (ABSA).
- Our new enriched test sets are at [data/arts_testset](data/arts_testset/)
- Our `AspectSet` mentioned in the paper Section 2.3 (Table 4) is provided in [data/aspectset](data/aspectset/)### Data Generation Process
We generate our new probing test set by **three automatic strategies**:
- RevTgt (sentence with a red background): Reverse the sentiment of the Target aspect.
- RevNon (sentence with a green background): Reverse the sentiment of the Non-target aspect.
- AddDiff (sentence with a blue background): Add new aspects with Different sentiment.### Aspect Probing Results
We probed nine ABSA models (as mentioned in our paper).
- Their outputs on SemEval 2014 are in the [output](output) folder.
## How to Use Our Code
If you have a **new** ABSA dataset, you can run our code to generate you own **aspect robustness probing** test set.
```
python code/main.py -dataset_name laptop
```### Dependencies
- Version of allennlp package: You can install allennlp-2.5.0 with the Predictor https://s3-us-west-2.amazonaws.com/allennlp/models/elmo-constituency-parser-2020.02.10.tar.gz
### All Trained Models
If needed, see a dump of all the trained models and output files [here](https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.VKWOI9).
## More Questions
If you have more questions, please feel free to submit a [GitHub issue]([issues](https://github.com/zhijing-jin/ARTS_testset/issues)https://github.com/zhijing-jin/ARTS_testset/issues).