Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/zhoudw-zdw/Awesome-Few-Shot-Class-Incremental-Learning

Awesome Few-Shot Class-Incremental Learning
https://github.com/zhoudw-zdw/Awesome-Few-Shot-Class-Incremental-Learning

List: Awesome-Few-Shot-Class-Incremental-Learning

Last synced: about 2 months ago
JSON representation

Awesome Few-Shot Class-Incremental Learning

Awesome Lists containing this project

README

        

# Awesome Few-Shot Class-Incremental Learning

*Pull requests are welcome if you find any interesting paper is missing.*

## Papers

### 2023

- On the Soft-Subnetwork for Few-Shot Class Incremental Learning (**ICLR23**)[[paper](https://openreview.net/pdf?id=z57WK5lGeHd)]
- Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class-Incremental Learning (**ICLR23**)[[paper](https://openreview.net/pdf?id=y5W8tpojhtJ)]
- Warping the Space: Weight Space Rotation for Class-Incremental Few-Shot Learning (**ICLR23**)[[paper](https://openreview.net/pdf?id=kPLzOfPfA2l)]
- Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation (**CVPR23**)[[paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Zhao_Few-Shot_Class-Incremental_Learning_via_Class-Aware_Bilateral_Distillation_CVPR_2023_paper.pdf)]
- GKEAL: Gaussian Kernel Embedded Analytic Learning for Few-shot Class Incremental Task (**CVPR23**)[[paper](https://openaccess.thecvf.com/content/CVPR2023/html/Zhuang_GKEAL_Gaussian_Kernel_Embedded_Analytic_Learning_for_Few-Shot_Class_Incremental_CVPR_2023_paper.html)]
- Learning With Fantasy: Semantic-Aware Virtual Contrastive Constraint for Few-Shot Class-Incremental Learning (**CVPR23**)[[paper](https://openaccess.thecvf.com/content/CVPR2023/html/Song_Learning_With_Fantasy_Semantic-Aware_Virtual_Contrastive_Constraint_for_Few-Shot_Class-Incremental_CVPR_2023_paper.html)]
- Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration (**NeurIPS2023**)[[paper](https://arxiv.org/abs/2312.05229)] [[Code](https://github.com/wangkiw/TEEN)]

### 2022
- Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks(**TPAMI22**)[[paper](https://arxiv.org/abs/2203.17030)][[Code](https://github.com/zhoudw-zdw/TPAMI-Limit)]
- Forward Compatible Few-Shot Class-Incremental Learning(**CVPR22**) [[paper](https://arxiv.org/abs/2203.06953)] [[Code](https://github.com/zhoudw-zdw/CVPR22-Fact)]
- MetaFSCIL: A Meta-Learning Approach for Few-Shot Class Incremental Learning (**CVPR22**) [[paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Chi_MetaFSCIL_A_Meta-Learning_Approach_for_Few-Shot_Class_Incremental_Learning_CVPR_2022_paper.pdf)]
- Constrained Few-shot Class-incremental Learning (**CVPR22**) [[paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Hersche_Constrained_Few-Shot_Class-Incremental_Learning_CVPR_2022_paper.pdf)]
- Subspace Regularizers for Few-Shot Class Incremental Learning (**ICLR22**) [[paper](https://openreview.net/forum?id=boJy41J-tnQ)]
- Few-Shot Class-Incremental Learning via Entropy-Regularized Data-Free Replay (**ECCV22**) [[paper](https://arxiv.org/abs/2207.11213?context=cs)]

### 2021
- Learning adaptive classifiers synthesis for generalized few-shot learning(**IJCV21**) [[paper](https://arxiv.org/pdf/1906.02944)] [[Code](https://github.com/Sha-Lab/aCASTLE)]
- MgSvF: Multi-Grained Slow vs. Fast Framework for Few-Shot Class-Incremental Learning(**TPAMI21**) [[paper](https://arxiv.org/abs/2006.15524)]
- Generalized and Incremental Few-Shot Learning by Explicit Learning and Calibration without Forgetting(**ICCV21**) [[paper](https://arxiv.org/abs/2108.08165)]
- Synthesized Feature Based Few-Shot Class-Incremental Learning on a Mixture of Subspaces(**ICCV21**) [[paper](https://openaccess.thecvf.com/content/ICCV2021/html/Cheraghian_Synthesized_Feature_Based_Few-Shot_Class-Incremental_Learning_on_a_Mixture_of_ICCV_2021_paper.html)]
- GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning(**ICML21**) [[paper](http://proceedings.mlr.press/v139/achituve21a/achituve21a.pdf)]
- Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima(**NeurIPS21**) [[paper](https://openreview.net/forum?id=ALvt7nXa2q)]
- Few-shot incremental learning with continually evolved classifiers(**CVPR21**) [[paper](https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Few-Shot_Incremental_Learning_With_Continually_Evolved_Classifiers_CVPR_2021_paper.html)]
- Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning(**CVPR21**) [[paper](https://openaccess.thecvf.com/content/CVPR2021/html/Zhu_Self-Promoted_Prototype_Refinement_for_Few-Shot_Class-Incremental_Learning_CVPR_2021_paper.html)]
- Semantic-Aware Knowledge Distillation for Few-Shot Class-Incremental Learning (**CVPR21**) [[paper](https://openaccess.thecvf.com/content/CVPR2021/html/Cheraghian_Semantic-Aware_Knowledge_Distillation_for_Few-Shot_Class-Incremental_Learning_CVPR_2021_paper.html)]
- Incremental few-shot learning via vector quantization in deep embedded space(**ICLR21**) [[paper](https://openreview.net/forum?id=3SV-ZePhnZM)]
- Few-Shot Lifelong Learning(**AAAI21**) [[paper](https://arxiv.org/pdf/2103.00991.pdf)]

### 2020

- Few-Shot Class-Incremental Learning (**CVPR20**) [[paper](https://openaccess.thecvf.com/content_CVPR_2020/html/Tao_Few-Shot_Class-Incremental_Learning_CVPR_2020_paper.html)]
- Incremental Few-Shot Object Detection(**CVPR20**) [[paper](https://openaccess.thecvf.com/content_CVPR_2020/html/Perez-Rua_Incremental_Few-Shot_Object_Detection_CVPR_2020_paper.html)]
- XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning(**ICML20**) [[paper](http://proceedings.mlr.press/v119/yoon20b.html)]

### 2019

- Incremental few-shot learning with attention attractor networks(**NeurIPS19**) [[paper](https://arxiv.org/abs/1810.07218)]

### 2018

- Dynamic few-shot visual learning without forgetting(**CVPR18**) [[paper](https://openaccess.thecvf.com/content_cvpr_2018/html/Gidaris_Dynamic_Few-Shot_Visual_CVPR_2018_paper.html)]

![visitors](https://visitor-badge.laobi.icu/badge?page_id=zhoudw-zdw.FSCIL-repo&left_color=green&right_color=red)