https://github.com/zhpmatrix/visdrone2018
ECCV2018(Challenge-Object Detection in Images)
https://github.com/zhpmatrix/visdrone2018
eccv-2018 faster-rcnn visdrone
Last synced: about 1 month ago
JSON representation
ECCV2018(Challenge-Object Detection in Images)
- Host: GitHub
- URL: https://github.com/zhpmatrix/visdrone2018
- Owner: zhpmatrix
- Created: 2018-04-29T13:27:44.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-06-05T09:15:22.000Z (over 7 years ago)
- Last Synced: 2025-03-26T17:11:24.204Z (7 months ago)
- Topics: eccv-2018, faster-rcnn, visdrone
- Language: Python
- Homepage: http://www.aiskyeye.com/
- Size: 7.72 MB
- Stars: 99
- Watchers: 3
- Forks: 35
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# VisDrone2018
**说明:后续可能不更新了。**
**Tips: this repo will not be updated.**
Baseline:
Name|maxDets|Result
---------------|------------------|----------------
Average Precision (AP) @( IoU=0.50:0.95) | maxDets=500 | 15.8738%.
Average Precision (AP) @( IoU=0.50 ) | maxDets=500 | 21.7822%.
Average Precision (AP) @( IoU=0.75 ) | maxDets=500 | 17.1753%.
Average Recall (AR) @( IoU=0.50:0.95) | maxDets= 1 | 0.83255%.
Average Recall (AR) @( IoU=0.50:0.95) | maxDets= 10 | 7.1636%.
Average Recall (AR) @( IoU=0.50:0.95) | maxDets=100 | 20.7602%.
Average Recall (AR) @( IoU=0.50:0.95) | maxDets=500 | 20.7602%.Cases From Test DataSet:
![]()
![]()
Implementation of a method of data augmentation named **patching**:
before augmentation:

after augmentation(only patching pedestrian and awning-tricycle, show pedestrian only):

ECCV2018的一个workshop举办的比赛,详见[Vision Meets Drones: A Challenge](http://www.aiskyeye.com/).
VisDrone2018_Dev_Kit: 官方提供的针对数据集的工具,用于评测。可以改为其他工具,比如在图片上显示BBox;
Txt2XML: 官方给定数据集的Ground Truth是自己的标注方式(Txt),该工具将该标注方式转化为PASCAL VOC2007的标注方式(XML);Python实现;
ShowBBOXFromXML: 针对PASCAL VOC2007,在图片上显示BBox;Python实现;该工具已经和官方给定基于Matlab的代码做过准确度对比,检验通过;
数据集的Badcase: 将BBox画成一条线的,导致NaN错误,需要过滤,详情可以参考issues;
Code中分享了基于PyTorch的Faster R-CNN代码用于这个比赛,原始代码来自[@jwyang](https://github.com/jwyang/faster-rcnn.pytorch),原始代码写的也有很多不完善的地方,但是是基于PyTorch实现的star最多的,用起来是没有问题的。Code中的仅仅作为该比赛代码的备份,不做正式分享。比如,没有数据。如果想要在现有代码基础上做些工作,可以联系我本人,帮助跑代码。