https://github.com/ziatdinovmax/aps2020tutorial
Tutorial on image analysis with deep / machine learning for APS-2020 meeting in Denver
https://github.com/ziatdinovmax/aps2020tutorial
Last synced: about 1 month ago
JSON representation
Tutorial on image analysis with deep / machine learning for APS-2020 meeting in Denver
- Host: GitHub
- URL: https://github.com/ziatdinovmax/aps2020tutorial
- Owner: ziatdinovmax
- Created: 2020-02-28T05:44:05.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-04-26T19:26:35.000Z (over 5 years ago)
- Last Synced: 2025-04-15T20:09:45.195Z (6 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 28.5 MB
- Stars: 3
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# APS2020Tutorial
Tutorial on image analysis with deep / machine learning for APS 2020 meeting in DenverThis repository includes the following executable (in Google Colab) notebooks:
1. APS2020_ColabIntro.ipynb - intro to basic operations in Google Colab [](https://colab.research.google.com/github/ziatdinovmax/APS2020Tutorial/blob/master/APS2020_ColabIntro.ipynb)
2. APS2020_NNRegressor.ipynb - simple regression with neural networks in PyTorch [](https://colab.research.google.com/github/ziatdinovmax/APS2020Tutorial/blob/master/APS2020_NNRegressor.ipynb)
3. APS2020_Unet_AtomicImages.ipynb - application of U-Net-like convolutional neural network for image cleaning and atom finding [](https://colab.research.google.com/github/ziatdinovmax/APS2020Tutorial/blob/master/APS2020_Unet_AtomicImages.ipynb)
4. APS2020_GPim.ipynb - application of Gaussian processes to reconstruction of sparse 2D and 3D image data [](https://colab.research.google.com/github/ziatdinovmax/APS2020Tutorial/blob/master/APS2020_GPim.ipynb)
5. (optional) APS2020_atomai.ipynb - Application of AtomAI package (pre-alpha) to atom finding and multivariate analysis of atomic images [](https://colab.research.google.com/github/ziatdinovmax/APS2020Tutorial/blob/master/APS2020_atomai.ipynb)