Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/zkywsg/daily-deeplearning

🔥机器学习/深度学习/Python/大模型/多模态/LLM/deeplearning/Python/Algorithm interview/NLP Tutorial
https://github.com/zkywsg/daily-deeplearning

cv deep-learning leetcode leetcode-python leetcode-solutions llm machine-learning nlp python pytorch pytorch-nlp pytorch-tutorial pytorch-tutorials tensorflow tensorflow-examples tensorflow-tutorials

Last synced: 7 days ago
JSON representation

🔥机器学习/深度学习/Python/大模型/多模态/LLM/deeplearning/Python/Algorithm interview/NLP Tutorial

Awesome Lists containing this project

README

        

# **Daily-DearnLearning**
###
💻计算机基础课

📊数据结构

- [**01基本概念和算法评价**](07-BaseClass/Ds/01基本概念和算法评价.md)
- [**02线性表**](07-BaseClass/Ds/02线性表.md)
- [**03栈和队列**](07-BaseClass/Ds/03栈和队列.md)
- [**04树和二叉树**](07-BaseClass/Ds/04树和二叉树.md)
- [**05图**](07-BaseClass/Ds/05图.md)
- [**06查找**](07-BaseClass/Ds/06查找.md)
- [**07排序**](07-BaseClass/Ds/07排序.md)

🖥️操作系统

- [**01操作系统的基本概念**](07-BaseClass/Os/01操作系统的基本概念.md)
- [**02操作系统的发展和分类**](07-BaseClass/Os/02操作系统的发展和分类.md)
- [**03操作系统的运行环境**](07-BaseClass/Os/03操作系统的运行环境.md)
- [**04进程和线程**](07-BaseClass/Os/04进程与线程.md)
- [**05处理机调度**](07-BaseClass/Os/05处理机调度.md)
- [**06进程同步**](07-BaseClass/Os/06进程同步.md)
- [**07死锁**](07-BaseClass/Os/07死锁.md)
- [**08内容管理概念**](07-BaseClass/Os/08内容管理概念.md)
- [**09虚拟内存管理**](07-BaseClass/Os/09虚拟内存管理.md)
- [**10文件系统基础**](07-BaseClass/Os/10文件系统基础.md)

🌐计算机网络

- [**01计算机网络概述**](07-BaseClass/Cn/01计算机网络概述.md)
- [**02计算机网络结构体系**](07-BaseClass/Cn/02计算机网络结构体系.md)
- [**03通信基础**](07-BaseClass/Cn/03通信基础.md)
- [**04奈氏准则和香农定理**](07-BaseClass/Cn/04奈氏准则和香农定理.md)
- [**05传输介质**](07-BaseClass/Cn/05传输介质.md)
- [**06物理层设备**](07-BaseClass/Cn/06物理层设备.md)
- [**07数据链路层的功能**](07-BaseClass/Cn/07数据链路层的功能.md)

###
🐍Python

##### 快速入门

- [**Day01: 变量/字符串/数字和运算符**](01-Python/Day01.md)
- [**Day02: 列表/元组**](01-Python/Day02.md)
- [**Day03: 字典/set**](01-Python/Day03.md)
- [**Day04: if/循环**](01-Python/Day04.md)
- [**Day05: 调用函数/定义函数/函数的参数**](01-Python/Day05.md)
- [**Day06: 迭代/列表生成式/生成器/迭代器**](01-Python/Day06.md)
- [**Day07: 高阶函数/返回函数/匿名函数/装饰器**](01-Python/Day07.md)
- [**Day08: 类和实例/限制访问/继承和多态**](01-Python/Day08.md)
- [**Day09: __slots/@property/多重继承/定制类/枚举类**](01-Python/Day09.md)
- [**Day10: 错误处理/调试/文档测试/单元测试**](01-Python/Day10.md)
- [**Day11: 文件读写/StringIO/操作文件**](01-Python/Day11.md)
- [**Day12: 多进程/多线程/ThreadLocal**](01-Python/Day12.md)
- [**Day13: datetime/collections/struct**](01-Python/Day13.md)
- [**Day14: 协程/asyncio/async/await/aiohttp**](01-Python/Day14.md)
- [**Day15**](01-Python/Day15.md)

###
📊数据科学包的使用

numpy

- [**创建ndarray**](05-Machine-Learning-Code/数据分析工具/Numpy/创建ndarray.md)
- [**数据类型和运算**](05-Machine-Learning-Code/数据分析工具/Numpy/数据类型和运算.md)
- [**索引和切片**](05-Machine-Learning-Code/数据分析工具/Numpy/索引和切片.md)
- [**矩阵操作**](05-Machine-Learning-Code/数据分析工具/Numpy/矩阵操作.md)

pandas

- [**加载数据**](05-Machine-Learning-Code/数据分析工具/Pandas/1_Loading.ipynb)
- [**行列选择**](05-Machine-Learning-Code/数据分析工具/Pandas/2_Select_row_and_columns.ipynb)
- [**索引**](05-Machine-Learning-Code/数据分析工具/Pandas/3_Set_reset_use_indexes.ipynb)
- [**过滤器**](05-Machine-Learning-Code/数据分析工具/Pandas/4_Filtering.ipynb)
- [**更新行列**](05-Machine-Learning-Code/数据分析工具/Pandas/5_update_rows_columns.ipynb)
- [**添加行列**](05-Machine-Learning-Code/数据分析工具/Pandas/6_Add_Remove_Rows.ipynb)
- [**数据排序**](05-Machine-Learning-Code/数据分析工具/Pandas/7_sort_data.ipynb)
- [**数据聚合**](05-Machine-Learning-Code/数据分析工具/Pandas/8_Grouping_Aggregating.ipynb)
- [**清洗数据**](05-Machine-Learning-Code/数据分析工具/Pandas/9_Cleaning_Data.ipynb)
- [**时间数据**](05-Machine-Learning-Code/数据分析工具/Pandas/10_WorkingWithDatesAndTimeSertesData.ipynb)

matplotlib

- [**直线图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/1_creating_and_customizing_plots.ipynb)
- [**bar图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/2_Bar_charts.ipynb)
- [**饼状图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/3_Pie.ipynb)
- [**stack图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/4_stack.ipynb)
- [**直线填充**](05-Machine-Learning-Code/数据分析工具/Matplotlib/5_Line_Filling_Area.ipynb)
- [**hist图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/6_histograms.ipynb)
- [**点状图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/7_Scatter.ipynb)
- [**时序图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/8_Time_Series_Data.ipynb)
- [**子图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/10_subplot.ipynb)

###
🤖️机器学习理论

- [**逻辑回归**](02-Machine-Learning/逻辑回归.md)
- [**EM算法**](02-Machine-Learning/EM算法.md)
- [**集成学习**](02-Machine-Learning/集成学习入门.md)
- [**随机森林和GBDT**](02-Machine-Learning/随机森林和GBDT.md)
- [**ID3/C4.5**](02-Machine-Learning/ID3和C4.5算法.md)
- [**K-means**](02-Machine-Learning/K-means.md)
- [**K最近邻**](02-Machine-Learning/K最近邻.md)
- [**贝叶斯**](02-Machine-Learning/贝叶斯.md)
- [**xgboost/lightGBM**](02-Machine-Learning/XgBoost和LightGBM.md)
- [**Gradient Boosting**](02-Machine-Learning/Gradient_Boosting.md)
- [**Boosting Tree**](https://mp.weixin.qq.com/s/Cdi0CcWDLgS6Kk7Kx71Vaw)
- [**回归树**](https://mp.weixin.qq.com/s/XiTH-8FY5Aw-p_1Ifhx4oQ)
- [**XgBoost**](02-Machine-Learning/XgBoost.md)
- [**GBDT分类**](02-Machine-Learning/GBDT分类.md)
- [**GBDT回归**](02-Machine-Learning/GBDT回归.md)
- [**LightGBM**](02-Machine-Learning/LightGBM.md)
- [**CatBoost**](02-Machine-Learning/CatBoost.md)

###
🏊‍♀️深度学习理论

- [**Word2Vec**](03-Deep-Learning/Word2Vec.md)
- [**BatchNorm**](03-Deep-Learning/BatchNorm.md)
- [**Dropout**](03-Deep-Learning/Dropout.md)
- [**CNN**](03-Deep-Learning/CNN.md)
- [**RNN**](03-Deep-Learning/RNN.md)
- [**LSTM**](03-Deep-Learning/LSTM.md)
- [**Attention**](03-Deep-Learning/Attention.md)
- [**ELMo**](03-Deep-Learning/ELMo.md)
- [**Transformer**](03-Deep-Learning/Transformer.md)
- [**BERT**](03-Deep-Learning/BERT.md)
- [**ALBERT**](03-Deep-Learning/ALBERT.md)
- [**XLNet**](03-Deep-Learning/XLNet.md)

###
🀄️NLP相关

- 理论
- [**Word2Vec**](03-Deep-Learning/Word2Vec.md)
- [**LSTM**](03-Deep-Learning/LSTM.md)
- [**ELMo**](03-Deep-Learning/ELMo.md)
- [**ALBERT**](03-Deep-Learning/ALBERT.md)
- [**XLNet**](03-Deep-Learning/XLNet.md)

###
🤖️机器学习实战

- **numpy**
- [**创建ndarray**](05-Machine-Learning-Code/数据分析工具/Numpy/创建ndarray.md)
- [**数据类型和运算**](05-Machine-Learning-Code/数据分析工具/Numpy/数据类型和运算.md)
- [**索引和切片**](05-Machine-Learning-Code/数据分析工具/Numpy/索引和切片.md)
- [**矩阵操作**](05-Machine-Learning-Code/数据分析工具/Numpy/矩阵操作.md)

- **pandas**
- [**加载数据**](05-Machine-Learning-Code/数据分析工具/Pandas/1_Loading.ipynb)
- [**行列选择**](05-Machine-Learning-Code/数据分析工具/Pandas/2_Select_row_and_columns.ipynb)
- [**索引**](05-Machine-Learning-Code/数据分析工具/Pandas/3_Set_reset_use_indexes.ipynb)
- [**过滤器**](05-Machine-Learning-Code/数据分析工具/Pandas/4_Filtering.ipynb)
- [**更新行列**](05-Machine-Learning-Code/数据分析工具/Pandas/5_update_rows_columns.ipynb)
- [**添加行列**](05-Machine-Learning-Code/数据分析工具/Pandas/6_Add_Remove_Rows.ipynb)
- [**数据排序**](05-Machine-Learning-Code/数据分析工具/Pandas/7_sort_data.ipynb)
- [**数据聚合**](05-Machine-Learning-Code/数据分析工具/Pandas/8_Grouping_Aggregating.ipynb)
- [**清洗数据**](05-Machine-Learning-Code/数据分析工具/Pandas/9_Cleaning_Data.ipynb)
- [**时间数据**](05-Machine-Learning-Code/数据分析工具/Pandas/10_WorkingWithDatesAndTimeSertesData.ipynb)

- **matplotlib**
- [**直线图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/1_creating_and_customizing_plots.ipynb)
- [**bar图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/2_Bar_charts.ipynb)
- [**饼状图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/3_Pie.ipynb)
- [**stack图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/4_stack.ipynb)
- [**直线填充**](05-Machine-Learning-Code/数据分析工具/Matplotlib/5_Line_Filling_Area.ipynb)
- [**hist图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/6_histograms.ipynb)
- [**点状图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/7_Scatter.ipynb)
- [**时序图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/8_Time_Series_Data.ipynb)
- [**子图**](05-Machine-Learning-Code/数据分析工具/Matplotlib/10_subplot.ipynb)

###
🏊‍♀️ 深度学习实战

- **tensorflow**
- [**helloword**](06-Deep-Learning-Code/Tensorflow/Helloworld.md)
- [**Basic**](06-Deep-Learning-Code/Tensorflow/Basic.md)
- [**linear_regression**](06-Deep-Learning-Code/Tensorflow/linear_regression.md)
- [**logistic_regression**](06-Deep-Learning-Code/Tensorflow/logistic_regression.md)
- [**world2vec**](006-Deep-Learning-Code/Tensorflow/world2vec.md)
- [**基本图像分类**](06-Deep-Learning-Code/Tensorflow/基本图像分类.ipynb)
- [**TFHub文本分类**](06-Deep-Learning-Code/Tensorflow/TFHub文本分类.ipynb)

- **pytorch**
- [**start**](06-Deep-Learning-Code/pytorch/gettingstart.md)
- [**autograd**](06-Deep-Learning-Code/pytorch/atuograd.ipynb)
- [**NeuralNetworks**](06-Deep-Learning-Code/pytorch/NeuralNetworks.ipynb)

###
💻大数据相关

- Hadoop
- [**介绍**](09-BigData/Hadoop/1_介绍.md)
- [**集群搭建01**](09-BigData/Hadoop/2_集群搭建01.md)
- [**集群搭建02**](09-BigData/Hadoop/3_集群搭建02.md)
- [**集群搭建03**](09-BigData/Hadoop/4_集群搭建03.md)
- [**HDFS01**](09-BigData/Hadoop/5_HDFS01.md)
- [**HDFS02**](09-BigData/Hadoop/6_HDFS02.md)

- Hive

###
📄剑指offer

- [**Day01:二维数组中的查找**](08-offer/day01.md)
- [**Day02:字符串替代**](08-offer/day02.md)
- [**Day03**](08-offer/day03.md)
- [**Day04**](08-offer/day04.md)
- [**Day05**](08-offer/day05.md)
- [**Day06**](08-offer/day06.md)
- [**Day07**](08-offer/day07.md)
- [**Day08**](08-offer/day08.md)
- [**Day09**](08-offer/day09.md)
- [**Day10**](08-offer/day10.md)
- [**Day11**](08-offer/day11.md)
- [**Day12**](08-offer/day12.md)
- [**Day13**](08-offer/day13.md)
- [**Day14**](08-offer/day14.md)
- [**Day15**](08-offer/day15.md)

##### 工作联系: [email protected]