Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/znxlwm/pytorch-cyclegan

Pytorch implementation of CycleGAN.
https://github.com/znxlwm/pytorch-cyclegan

cyclegan gan generative-adversarial-network generative-model image-translation pytorch

Last synced: 2 months ago
JSON representation

Pytorch implementation of CycleGAN.

Awesome Lists containing this project

README

        

# pytorch-CycleGAN
Pytorch implementation of CycleGAN [1].

* you can download datasets: https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/
* you can see more information for network architecture and training details in https://arxiv.org/pdf/1703.10593.pdf

## dataset
* apple2orange
* apple training images: 995, orange training images: 1,019, apple test images: 266, orange test images: 248
* horse2zebra
* horse training images: 1,067, zebra training images: 1,334, horse test images: 120, zebra test images: 140

## Resutls
### apple2orange (after 200 epochs)
* apple2orange

Input
Output
Reconstruction











* orange2apple

Input
Output
Reconstruction











* Learning Time
* apple2orange - Avg. per epoch: 299.38 sec; Total 200 epochs: 62,225.33 sec

### horse2zebra (after 200 epochs)
* horse2zebra

Input
Output
Reconstruction











* zebra2horse

Input
Output
Reconstruction











* Learning Time
* horse2zebra - Avg. per epoch: 299.25 sec; Total 200 epochs: 61,221.27 sec

## Development Environment

* Ubuntu 14.04 LTS
* NVIDIA GTX 1080 ti
* cuda 8.0
* Python 2.7.6
* pytorch 0.1.12
* matplotlib 1.3.1
* scipy 0.19.1

## Reference

[1] Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint arXiv:1703.10593 (2017).

(Full paper: https://arxiv.org/pdf/1703.10593.pdf)