Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/znxlwm/pytorch-cyclegan
Pytorch implementation of CycleGAN.
https://github.com/znxlwm/pytorch-cyclegan
cyclegan gan generative-adversarial-network generative-model image-translation pytorch
Last synced: 2 months ago
JSON representation
Pytorch implementation of CycleGAN.
- Host: GitHub
- URL: https://github.com/znxlwm/pytorch-cyclegan
- Owner: znxlwm
- Created: 2017-08-24T06:13:27.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-09-06T04:17:01.000Z (over 7 years ago)
- Last Synced: 2024-09-05T15:48:30.212Z (5 months ago)
- Topics: cyclegan, gan, generative-adversarial-network, generative-model, image-translation, pytorch
- Language: Python
- Size: 6.71 MB
- Stars: 40
- Watchers: 4
- Forks: 8
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# pytorch-CycleGAN
Pytorch implementation of CycleGAN [1].* you can download datasets: https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/
* you can see more information for network architecture and training details in https://arxiv.org/pdf/1703.10593.pdf## dataset
* apple2orange
* apple training images: 995, orange training images: 1,019, apple test images: 266, orange test images: 248
* horse2zebra
* horse training images: 1,067, zebra training images: 1,334, horse test images: 120, zebra test images: 140## Resutls
### apple2orange (after 200 epochs)
* apple2orangeInput
Output
Reconstruction
* orange2apple
Input
Output
Reconstruction
* Learning Time
* apple2orange - Avg. per epoch: 299.38 sec; Total 200 epochs: 62,225.33 sec### horse2zebra (after 200 epochs)
* horse2zebraInput
Output
Reconstruction
* zebra2horse
Input
Output
Reconstruction
* Learning Time
* horse2zebra - Avg. per epoch: 299.25 sec; Total 200 epochs: 61,221.27 sec## Development Environment
* Ubuntu 14.04 LTS
* NVIDIA GTX 1080 ti
* cuda 8.0
* Python 2.7.6
* pytorch 0.1.12
* matplotlib 1.3.1
* scipy 0.19.1## Reference
[1] Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint arXiv:1703.10593 (2017).
(Full paper: https://arxiv.org/pdf/1703.10593.pdf)