An open API service indexing awesome lists of open source software.

https://github.com/znxlwm/tensorflow-mnist-cgan-cdcgan

Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) and conditional Deep Convolutional Adversarial Networks (cDCGAN) for MANIST dataset.
https://github.com/znxlwm/tensorflow-mnist-cgan-cdcgan

cgan conditional-gan gan generative-adversarial-network mnist tensorflow

Last synced: about 1 month ago
JSON representation

Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) and conditional Deep Convolutional Adversarial Networks (cDCGAN) for MANIST dataset.

Awesome Lists containing this project

README

          

# tensorflow-MNIST-cGAN-cDCGAN
Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) [1] and conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) for MANIST [2] dataset.

* you can download
- MNIST dataset: http://yann.lecun.com/exdb/mnist/

## Implementation details
* cGAN

![GAN](tensorflow_cGAN.png)

## Resutls
* Generate using fixed noise (fixed_z_)

cGAN
cDCGAN


* MNIST vs Generated images

MNIST
cGAN after 100 epochs
cDCGAN after 30 epochs



* Training loss

cGAN
cDCGAN


* Learning time
* MNIST cGAN - Avg. per epoch: 3.21 sec; Total 100 epochs: 1800.37 sec
* MNIST cDCGAN - Avg. per epoch: 53.07 sec; Total 30 epochs: 2072.29 sec

## Development Environment

* Windows 7
* GTX1080 ti
* cuda 8.0
* Python 3.5.3
* tensorflow-gpu 1.2.1
* numpy 1.13.1
* matplotlib 2.0.2
* imageio 2.2.0

## Reference

[1] Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

(Full paper: https://arxiv.org/pdf/1411.1784.pdf)

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.