Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/znxlwm/tensorflow-mnist-gan-dcgan

Tensorflow implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Netwokrs for MNIST dataset.
https://github.com/znxlwm/tensorflow-mnist-gan-dcgan

dcgan gan generative-adversarial-network mnist tensorflow

Last synced: 18 days ago
JSON representation

Tensorflow implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Netwokrs for MNIST dataset.

Awesome Lists containing this project

README

        

# tensorflow-MNIST-GAN-DCGAN
Tensorflow implementation of Generative Adversarial Networks (GAN) [1] and Deep Convolutional Generative Adversarial Networks (DCGAN) [2] for MNIST [3] dataset.

* you can download
- MNIST dataset: http://yann.lecun.com/exdb/mnist/

## Implementation details
* GAN

![GAN](tensorflow_GAN.png)

* DCGAN

![Loss](tensorflow_DCGAN.png)

## Resutls
* Generate using fixed noise (fixed_z_)

GAN
DCGAN


* MNIST vs Generated images

MNIST
GAN after 100 epochs
DCGAN agter 20 epochs



* Training loss
* GAN

![Loss](MNIST_GAN_results/MNIST_GAN_train_hist.png)

* Learning time
* MNIST GAN - Avg. per epoch: 4.97 sec; Total 100 epochs: 1255.92 sec
* MNIST DCGAN - Avg. per epoch: 175.84 sec; Total 20 epochs: 3619.97 sec

## Development Environment

* Windows 7
* GTX1080 ti
* cuda 8.0
* Python 3.5.3
* tensorflow-gpu 1.2.1
* numpy 1.13.1
* matplotlib 2.0.2
* imageio 2.2.0

## Reference

[1] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

(Full paper: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf)

[2] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

(Full paper: https://arxiv.org/pdf/1511.06434.pdf)

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.