Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/znxlwm/tensorflow-mnist-gan-dcgan
Tensorflow implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Netwokrs for MNIST dataset.
https://github.com/znxlwm/tensorflow-mnist-gan-dcgan
dcgan gan generative-adversarial-network mnist tensorflow
Last synced: 18 days ago
JSON representation
Tensorflow implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Netwokrs for MNIST dataset.
- Host: GitHub
- URL: https://github.com/znxlwm/tensorflow-mnist-gan-dcgan
- Owner: znxlwm
- Created: 2017-07-19T08:42:03.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-08-09T07:53:56.000Z (over 7 years ago)
- Last Synced: 2024-12-07T05:12:29.519Z (about 1 month ago)
- Topics: dcgan, gan, generative-adversarial-network, mnist, tensorflow
- Language: Python
- Homepage:
- Size: 18.6 MB
- Stars: 175
- Watchers: 10
- Forks: 91
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# tensorflow-MNIST-GAN-DCGAN
Tensorflow implementation of Generative Adversarial Networks (GAN) [1] and Deep Convolutional Generative Adversarial Networks (DCGAN) [2] for MNIST [3] dataset.* you can download
- MNIST dataset: http://yann.lecun.com/exdb/mnist/## Implementation details
* GAN![GAN](tensorflow_GAN.png)
* DCGAN
![Loss](tensorflow_DCGAN.png)
## Resutls
* Generate using fixed noise (fixed_z_)GAN
DCGAN
* MNIST vs Generated images
MNIST
GAN after 100 epochs
DCGAN agter 20 epochs
* Training loss
* GAN![Loss](MNIST_GAN_results/MNIST_GAN_train_hist.png)
* Learning time
* MNIST GAN - Avg. per epoch: 4.97 sec; Total 100 epochs: 1255.92 sec
* MNIST DCGAN - Avg. per epoch: 175.84 sec; Total 20 epochs: 3619.97 sec## Development Environment
* Windows 7
* GTX1080 ti
* cuda 8.0
* Python 3.5.3
* tensorflow-gpu 1.2.1
* numpy 1.13.1
* matplotlib 2.0.2
* imageio 2.2.0## Reference
[1] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
(Full paper: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf)
[2] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
(Full paper: https://arxiv.org/pdf/1511.06434.pdf)
[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.