Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/znxlwm/tensorflow-pix2pix
Tensorflow implementation of pix2pix for various datasets.
https://github.com/znxlwm/tensorflow-pix2pix
cgan conditional-gan gan generative-adversarial-network generative-model image-translation pix2pix tensorflow tensorflow-pix2pix unet
Last synced: 29 days ago
JSON representation
Tensorflow implementation of pix2pix for various datasets.
- Host: GitHub
- URL: https://github.com/znxlwm/tensorflow-pix2pix
- Owner: znxlwm
- Created: 2017-08-16T00:30:49.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-08-22T09:19:20.000Z (over 7 years ago)
- Last Synced: 2024-09-05T15:48:31.409Z (4 months ago)
- Topics: cgan, conditional-gan, gan, generative-adversarial-network, generative-model, image-translation, pix2pix, tensorflow, tensorflow-pix2pix, unet
- Language: Python
- Size: 30.7 MB
- Stars: 6
- Watchers: 4
- Forks: 3
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# tensorflow-pix2pix
Tensorflow implementation of pix2pix [1] for various datasets.* you can download datasets: https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/
* you can see more information for network architecture and training details in https://arxiv.org/pdf/1611.07004.pdf## dataset
* cityscapes
* 2,975 training images, 200 train epochs, 1 batch size, inverse order: True
* facades
* 400 training images, 200 train epochs, 1 batch size, inverse order: True
* maps
* 1,096 training images, 200 train epochs, 1 batch size, inverse order: True
* edges2shoes
* 50k training images, 15 train epochs, 4 batch size, inverse order: False
* edges2handbags
* 137k training images, 15 train epochs, 4 batch size, inverse order: False## Resutls
### maps
* facades after 200 epochsInput
Output
Ground truth
* Generate animation for fixed inputs
* First column: input, second column: output, third column: ground truth![maps_gif](facades_results/facades_generate_animation.gif)
* Learning time
* Avg. per epoch: 54.19 sec; Total 200 epochs: 11,339.61 sec
### maps
* maps after 200 epochsInput
Output
Ground truth
* Generate animation for fixed inputs
* First column: input, second column: output, third column: ground truth![maps_gif](maps_results/maps_generate_animation.gif)
* Learning time
* Avg. per epoch: 205.08 sec; Total 200 epochs: 41,622.29 sec
## Development Environment* Windows 7
* GTX1080 ti
* cuda 8.0
* Python 3.5.3
* tensorflow-gpu 1.2.1
* numpy 1.13.1
* matplotlib 2.0.2
* imageio 2.2.0## Reference
[1] Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv preprint arXiv:1611.07004 (2016).
(Full paper: https://arxiv.org/pdf/1611.07004.pdf)