https://github.com/zolabar/trendpy
Time Series Regression with Python
https://github.com/zolabar/trendpy
binder fourier-transform heroku-deployment least-square-regression numpy optimization plotly regression voila-dashboard
Last synced: 7 months ago
JSON representation
Time Series Regression with Python
- Host: GitHub
- URL: https://github.com/zolabar/trendpy
- Owner: zolabar
- License: mit
- Created: 2022-01-22T16:43:38.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-02-21T09:47:33.000Z (over 1 year ago)
- Last Synced: 2025-03-17T15:05:30.370Z (7 months ago)
- Topics: binder, fourier-transform, heroku-deployment, least-square-regression, numpy, optimization, plotly, regression, voila-dashboard
- Language: Jupyter Notebook
- Homepage:
- Size: 13.6 MB
- Stars: 11
- Watchers: 2
- Forks: 3
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: citation.cff
Awesome Lists containing this project
README
[](https://doi.org/10.5281/zenodo.7009281) Jupyter Lab: [](https://mybinder.org/v2/gh/zolabar/trendPy/HEAD) Documentation: [](https://zolabar.github.io/trendPy/) WebApps: [](https://mybinder.org/v2/gh/zolabar/trendPy/experimental?urlpath=voila%2Frender%2F/trendpy_webapp.ipynb) (binder) [](https://zolabar-trendpy-trendpy2-app-kfqshb.streamlit.app/)
# Usage
```pip install trendpy2```
and use it as **trendpy2** as shown in the ```example.ipynb``` and approximate your time series ($f:\mathbb{R}\to \mathbb{R}$) with the following trends
* linear $f(x)=a\cdot x+b$
* polynomial $f(x)=a_n\cdot x^n+a_{n-1}\cdot x^{n-1}+...+a_0$
* exponential $f(x)=a\cdot e^{b\cdot x}$
* trigonometric $f(x)=a\cdot \cos(2\cdot \pi\cdot b\cdot x+c)$
* "free" (for max. three parameters) (e.g.```a*arctan(b*x+c)```, ```a*exp(b*x+c)```, ```a*(x*b)+c```), the intial guess for a, b, c is 1.in your Python scripts or jupyter notebooks and use the best of the numerical and symbolic worlds to make predictions and assess the quality of your fit!
**trendpy2** is deterministic, i.e. complementary to [trendpy](https://github.com/RonsenbergVI/trendpy), which uses a stochastic approach.
or use one of the **WebApps** with the correspondig button above (voila app or streamlit app).
For more, have a look at the [**sphinx-documentation**](https://zolabar.github.io/trendPy/)!
### Voila App
### Streamlit App