Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zqfang/GSEApy
Gene Set Enrichment Analysis in Python
https://github.com/zqfang/GSEApy
enrichment-analysis gsea python3 rust
Last synced: about 1 month ago
JSON representation
Gene Set Enrichment Analysis in Python
- Host: GitHub
- URL: https://github.com/zqfang/GSEApy
- Owner: zqfang
- License: bsd-3-clause
- Created: 2016-01-09T03:05:06.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2024-10-31T03:25:28.000Z (about 1 month ago)
- Last Synced: 2024-10-31T04:20:50.433Z (about 1 month ago)
- Topics: enrichment-analysis, gsea, python3, rust
- Language: Python
- Homepage: http://gseapy.rtfd.io/
- Size: 99 MB
- Stars: 560
- Watchers: 11
- Forks: 117
- Open Issues: 29
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
- awesome-single-cell - GSEApy - [Python] - GSEApy: Gene Set Enrichment Analysis in Python. GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr. GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python. (Software packages / RNA-seq)
README
GSEApy
========GSEApy: Gene Set Enrichment Analysis in Python.
------------------------------------------------.. image:: https://badge.fury.io/py/gseapy.svg
:target: https://badge.fury.io/py/gseapy.. image:: https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic
:target: http://bioconda.github.io.. image:: https://anaconda.org/bioconda/gseapy/badges/downloads.svg
:target: https://anaconda.org/bioconda/gseapy.. image:: https://github.com/zqfang/GSEApy/workflows/GSEApy/badge.svg?branch=master
:target: https://github.com/zqfang/GSEApy/actions
:alt: Action Status.. image:: http://readthedocs.org/projects/gseapy/badge/?version=master
:target: http://gseapy.readthedocs.io/en/master/?badge=master
:alt: Documentation Status.. image:: https://img.shields.io/badge/license-MIT-blue.svg
:target: https://img.shields.io/badge/license-MIT-blue.svg.. image:: https://img.shields.io/pypi/pyversions/gseapy.svg
:alt: PyPI - Python Version**Release notes** : https://github.com/zqfang/GSEApy/releases
`Tutorial for scRNA-seq datasets `_
`Tutorial for general usage `_
Citation
------------------------------------
::Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python,
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757GSEApy is a Python/Rust implementation for **GSEA** and wrapper for **Enrichr**.
--------------------------------------------------------------------------------------------GSEApy can be used for **RNA-seq, ChIP-seq, Microarray** data. It can be used for convenient GO enrichment and to produce **publication quality figures** in python.
GSEApy has 7 sub-commands available: ``gsea``, ``prerank``, ``ssgsea``, ``gsva``, ``replot`` ``enrichr``, ``biomart``.
:gsea: The ``gsea`` module produces `GSEA `_ results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.
:prerank: The ``prerank`` module produces **Prerank tool** results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. ``prerank`` module is an API to `GSEA` pre-rank tools.
:ssgsea: The ``ssgsea`` module performs **single sample GSEA(ssGSEA)** analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include ``GCT`` file) with expression values and a ``GMT`` file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by `D. Barbie et al 2009 `_.
:gsva: The ``gsva`` module performs `GSVA `_ method by `Hänzelmann et al `_. The input is same to ssgsea.
:replot: The ``replot`` module reproduce GSEA desktop version results. The only input for GSEApy is the location to ``GSEA`` Desktop output results.
:enrichr: The ``enrichr`` module enable you perform gene set enrichment analysis using ``Enrichr`` API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.
:biomart: The ``biomart`` module helps you convert gene ids using BioMart API.Please use 'gseapy COMMAND -h' to see the detail description for each option of each module.
The full ``GSEA`` is far too extensive to describe here; see
`GSEA `_ documentation for more information. All files' formats for GSEApy are identical to ``GSEA`` desktop version.Why GSEApy
-----------------------------------------------------I would like to use Pandas to explore my data, but I did not find a convenient tool to
do gene set enrichment analysis in python. So, here are my reasons:* **Ability to run inside python interactive console without having to switch to R!!!**
* User friendly for both wet and dry lab users.
* Produce or reproduce publishable figures.
* Perform batch jobs easy.
* Easy to use in bash shell or your data analysis workflow, e.g. snakemake.GSEApy vs GSEA(Broad) output
-----------------------------------------------
Using the same data for ``GSEAPreranked``, and ``GSEApy`` reproduce similar results... image:: docs/Preank.py.vs.broad.jpg
:width: 400See more output here: `Example `_
Installation
------------| Install gseapy package from bioconda or pip.
.. code:: shell
# if you have conda (MacOS_x86-64 and Linux only)
$ conda install -c bioconda gseapy
# Windows and MacOS_ARM64(M1/2-Chip)
$ pip install gseapy| If pip install failed, use
.. code:: shell
# you need to install rust first to compile the code
curl https://sh.rustup.rs -sSf | sh -s -- -y
# export rust compiler
export PATH="$PATH:$HOME/.cargo/bin"
# install
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapyDependency
--------------
* Python 3.7+Mandatory
~~~~~~~~~* build
* Rust: For gseapy > 0.11.0, Rust compiler is needed
* setuptools-rust
* run
* Numpy >= 1.13.0
* Scipy
* Pandas
* Matplotlib
* RequestsRun GSEApy
-----------------For command line usage:
~~~~~~~~~~~~~~~~~~~~~~~.. code:: bash
# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test# An example to run GSVA using gseapy ssgsea module
$ gseapy gsva -d expression.txt -g gene_sets.gmt -o test# An example to use enrichr api
# see details for -g input -> ``get_library_name``
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o testRun gseapy inside python console:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this
.. code:: python
import gseapy
# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')# run GSVA
gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')2. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.
see detail here: `Example `_
.. code:: python
# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like
# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')# prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')# ssGSEA
gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')# gsva
gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')3. For ``enrichr`` , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)
.. code:: python
# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')
# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
outdir='test', cutoff=0.05, format='png' )GSEApy supported gene set libaries :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~To see the full list of gseapy supported gene set libraries, please click here: `Library `_
Or use ``get_library_name`` function inside python console.
.. code:: python
#see full list of latest enrichr library names, which will pass to -g parameter:
names = gseapy.get_library_name()# show top 20 entries.
print(names[:20])['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]Dev
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.. code:: shell
# test rust extension only
cargo test --features=extension-module
# test whole package
python setup.py testBug Report
~~~~~~~~~~~~~~~~~~~~~~~~~~~If you would like to report any bugs when use gseapy, don't hesitate to create an issue on github here.
To get help of GSEApy
------------------------------------1. See `Frequently Asked Questions `_
2. Visit the document site at `Examples `_
3. The GSEApy discussion channel: `Q&A `_