Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zuston/r1
Rust based high-performance Apache Uniffle shuffle-server
https://github.com/zuston/r1
Last synced: 25 days ago
JSON representation
Rust based high-performance Apache Uniffle shuffle-server
- Host: GitHub
- URL: https://github.com/zuston/r1
- Owner: zuston
- Created: 2024-05-28T07:01:04.000Z (8 months ago)
- Default Branch: master
- Last Pushed: 2024-12-13T03:33:25.000Z (29 days ago)
- Last Synced: 2024-12-13T04:24:38.070Z (29 days ago)
- Language: Rust
- Homepage:
- Size: 504 KB
- Stars: 4
- Watchers: 1
- Forks: 0
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Another implementation of Apache Uniffle shuffle server (Single binary, no extra dependencies and quick)
## Roadmap
- [ ] Support storing data into s3
- [ ] Support single buffer flush
- [ ] Support huge partition limit
- [ ] Quick decommission that will spill data into remote storage like s3
- [ ] Using DirectIO to access file data
- [x] Support customized protocol to interact with netty based uniffle client
- [ ] Support writing multiple replicas by pipeline mode in server side
- [ ] Create the grafana template to show the metrics dashboard by the unified style
- [ ] Introduce the clippy to validate
- [ ] Zero copy for **urpc** and mem + localfile getting/writing
- [ ] Recover when upgrading## Benchmark report
#### Environment
| type | description |
|---------------------|:------------------------------------------------------------------------|
| Software | Uniffle 0.8.0 / Hadoop 3.2.2 / Spark 3.1.2 |
| Hardware | Machine 96 cores, 512G memory, 1T * 4 SATA SSD, network bandwidth 8GB/s |
| Hadoop Yarn Cluster | 1 * ResourceManager + 40 * NodeManager, every machine 1T * 4 SATA SSD |
| Uniffle Cluster | 1 * Coordinator + 1 * Shuffle Server, every machine 1T * 4 SATA SSD |#### Configuration
__spark's conf__
```yaml
spark.executor.instances 400
spark.executor.cores 1
spark.executor.memory 2g
spark.shuffle.manager org.apache.spark.shuffle.RssShuffleManager
spark.rss.storage.type MEMORY_LOCALFILE
```__Rust-based shuffle-server conf__
```
store_type = "MEMORY_LOCALFILE"
grpc_port = 21100
coordinator_quorum = ["xxxxx:21000"]
tags = ["riffle2", "datanode", "GRPC", "ss_v5"][memory_store]
capacity = "10G"
dashmap_shard_amount = 128[localfile_store]
data_paths = ["/data1/uniffle/t1", "/data2/uniffle/t1", "/data3/uniffle/t1", "/data4/uniffle/t1"]
healthy_check_min_disks = 0
disk_max_concurrency = 2000[hybrid_store]
memory_spill_high_watermark = 0.5
memory_spill_low_watermark = 0.2
memory_spill_max_concurrency = 1000[metrics]
http_port = 19998
push_gateway_endpoint = "http://xxxxx/prometheus/pushgateway"[runtime_config]
read_thread_num = 40
write_thread_num = 200
grpc_thread_num = 100
http_thread_num = 10
default_thread_num = 20
dispatch_thread_num = 10
```
`GRPC_PARALLELISM=100 WORKER_IP=10.0.0.1 RUST_LOG=info ./uniffle-worker`#### TeraSort Result
| type/buffer capacity | 273G (compressed) |
|---------------------------------------|:------------------:|
| vanilla spark ESS | 4.2min (1.3m/2.9m) |
| | |
| riffle(grpc) / 10g | 4.0min (1.9m/2.1m) |
| riffle(grpc) / 300g | 3.5min (1.4m/2.1m) |
| | |
| riffle(urpc) / 10g | 3.8min (1.6m/2.2m) |
| riffle(urpc) / 300g | 3.2min (1.2m/2.0m) |
| | |
| uniffle(grpc)/ 10g | 4.0min (1.8m/2.2m) |
| uniffle(grpc)/ 300g | 8.6min (2.7m/5.9m) |
| | |
| uniffle(netty)(default malloc) 10g | 5.1min (2.7m/2.4m) |
| uniffle(netty)(jemalloc) 10g | 4.5min (2.0m/2.5m) |
| uniffle(netty)(default malloc)/ 300g | 4.0min (1.5m/2.5m) |
| uniffle(netty)(jemalloc)/ 300g | 6.6min (1.9m/4.7m) |> tips: the riffle's urpc implements the customized tcp stream's proto, that is named with the NETTY rpc type in java side.
## Build
`cargo build --release --features hdfs,jemalloc`
Uniffle-x currently treats all compiler warnings as error, with some dead-code warning excluded. When you are developing
and really want to ignore the warnings for now, you can use `cargo --config 'build.rustflags=["-W", "warnings"]' build`
to restore the default behavior. However, before submit your pr, you should fix all the warnings.## Run
`WORKER_IP={ip} RUST_LOG=info WORKER_CONFIG_PATH=./config.toml ./uniffle-worker`
### HDFS Setup
Benefit from the hdfs-native crate, there is no need to setup the JAVA_HOME and relative dependencies.
If HDFS store is valid, the spark client must specify the conf of `spark.rss.client.remote.storage.useLocalConfAsDefault=true````shell
cargo build --features hdfs --release
``````shell
# configure the kerberos
KRB5_CONFIG=/etc/krb5.conf KRB5CCNAME=/tmp/krb5cc_2002 LOG=info ./uniffle-worker
```## All config options
```toml
store_type = "MEMORY_LOCALFILE_HDFS"
grpc_port = 19999
coordinator_quorum = ["host1:port", "host2:port"]
urpc_port = 20000
http_monitor_service_port = 20010
heartbeat_interval_seconds = 2
tags = ["GRPC", "ss_v5", "GRPC_NETTY"][memory_store]
capacity = "1G"
buffer_ticket_timeout_sec = 300
buffer_ticket_check_interval_sec = 10
dashmap_shard_amount = 128[localfile_store]
data_paths = ["/var/data/path1", "/var/data/path2"]
min_number_of_available_disks = 1
disk_high_watermark = 0.8
disk_low_watermark = 0.7
disk_max_concurrency = 2000
disk_write_buf_capacity = "1M"
disk_read_buf_capacity = "1M"
disk_healthy_check_interval_sec = 60[hdfs_store]
max_concurrency = 50
partition_write_max_concurrency = 20[hdfs_store.kerberos_security_config]
keytab_path = "/path/to/keytab"
principal = "principal@REALM"[hybrid_store]
memory_spill_high_watermark = 0.8
memory_spill_low_watermark = 0.2
memory_single_buffer_max_spill_size = "1G"
memory_spill_to_cold_threshold_size = "128M"
memory_spill_to_localfile_concurrency = 4000
memory_spill_to_hdfs_concurrency = 500
huge_partition_memory_spill_to_hdfs_threshold_size = "64M"[runtime_config]
read_thread_num = 100
localfile_write_thread_num = 100
hdfs_write_thread_num = 20
http_thread_num = 2
default_thread_num = 10
dispatch_thread_num = 100[metrics]
push_gateway_endpoint = "http://example.com/metrics"
push_interval_sec = 10
labels = { env = "production", service = "my_service" }[log]
path = "/var/log/my_service.log"
rotation = "Daily"[app_config]
app_heartbeat_timeout_min = 5
huge_partition_marked_threshold = "1G"
huge_partition_memory_limit_percent = 0.75[tracing]
jaeger_reporter_endpoint = "http://jaeger:14268"
jaeger_service_name = "my_service"[health_service_config]
alive_app_number_max_limit = 100
```## Profiling
### Heap profiling
1. build with profile support
```shell
cargo build --release --features memory-prof
```
2. Start with profile
```shell
curl localhost:20010/debug/heap/profile > heap.pb.gz
go tool pprof -http="0.0.0.0:8081" heap.pb.gz
```
### CPU Profiling
1. build with jemalloc feature
```shell
cargo build --release --features jemalloc
```
2. Paste following command to get cpu profile flamegraph
```shell
go tool pprof -http="0.0.0.0:8081" http://{remote_ip}:8080/debug/pprof/profile?seconds=30
```
- localhost:8080: riffle server.
- remote_ip: pprof server address.
- seconds=30: Profiling lasts for 30 seconds.Then open the URL :8081/ui/flamegraph in your browser to view the flamegraph: