Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zw-zhang/hope
This is a sample implementation of "Asymmetric Transitivity Preserving Graph Embedding"(KDD 2016).
https://github.com/zw-zhang/hope
asymmetric-transtivity gsvd high-order-proximity network-embedding network-representation-learning
Last synced: about 1 month ago
JSON representation
This is a sample implementation of "Asymmetric Transitivity Preserving Graph Embedding"(KDD 2016).
- Host: GitHub
- URL: https://github.com/zw-zhang/hope
- Owner: ZW-ZHANG
- Created: 2018-06-01T06:19:12.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-06-29T05:10:38.000Z (over 6 years ago)
- Last Synced: 2024-08-04T10:02:23.275Z (4 months ago)
- Topics: asymmetric-transtivity, gsvd, high-order-proximity, network-embedding, network-representation-learning
- Language: Matlab
- Homepage:
- Size: 3.91 KB
- Stars: 15
- Watchers: 0
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# HOPE
This is a sample implementation of "[Asymmetric Transitivity Preserving Graph Embedding](http://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf)"(KDD 2016).### Requirements
```
MATLAB R2014a
```### Usage
run `embed_main.m` with matlab```
Input:
A: N*N adjacency matrix (sparse)K: dimensionality of embedding space
beta: decaying constant, default is 0.5 / spectral radius
Output:
U: N*K left embedding matrixV: N*K right embedding matrix
The high-order proximity (katz) matrix is approximated by U * V'
```
### Cite
If you find this code useful, please cite our paper:
```
@inproceedings{ou2016asymmetric,
title={Asymmetric transitivity preserving graph embedding},
author={Ou, Mingdong and Cui, Peng and Pei, Jian and Zhang, Ziwei and Zhu, Wenwu},
booktitle={Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining},
pages={1105--1114},
year={2016},
organization={ACM}
}
```