Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zw-zhang/powerlaw_tp
This is a sample implementation of "Power-law Distribution Aware Trust Prediction", IJCAI 2018.
https://github.com/zw-zhang/powerlaw_tp
matrix-factorization powerlaw trust-prediction
Last synced: 24 days ago
JSON representation
This is a sample implementation of "Power-law Distribution Aware Trust Prediction", IJCAI 2018.
- Host: GitHub
- URL: https://github.com/zw-zhang/powerlaw_tp
- Owner: ZW-ZHANG
- Created: 2018-08-02T07:11:24.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-08-02T07:14:02.000Z (over 6 years ago)
- Last Synced: 2023-09-18T09:39:37.958Z (about 1 year ago)
- Topics: matrix-factorization, powerlaw, trust-prediction
- Language: Matlab
- Size: 1.95 KB
- Stars: 1
- Watchers: 0
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Trust Prediction
This is a sample implementation of "[Power-law Distribution Aware Trust Prediction](https://zw-zhang.github.io/files/2018_IJCAI_Trust.pdf)"(IJCAI 2018).### Requirements
```
MATLAB (MATLAB 2017a works fine for me)
```### Usage
Run Powerlaw_TP with MATLAB
```
function [U,V,S] = Powerlaw_TP(A_input,k,beta,l1,l2,l3,l4,l5,iter,seed,use_GPU)
% Inputs:
% A_input: n x n adjacency matrix
% k: dimensionality
% beta: coefficient for high-order proximity
% l1,l2,l3,l4,l5: regularization parameters
% iter: number of iterations
% seed: random seed
% use_GPU: whether to use GPU
% Outputs:
% U: n x k matrix
% V: k x k matrix
% S: n x n matrix, sparse
% Objective function:
% min_{U,V,S} ||(A - U * V * U' - S)||_F^2 + l1 * ||U||_F^2 + l2 * ||V||_F^2 + l3 * ||S||_F^2 + l4 * ||S||_1
```### Cite
If you find this code useful, please cite our paper:
```
@inproceedings{wang2018power,
title={Power-law Distribution Aware Trust Prediction.},
author={Wang, Xiao and Zhang, Ziwei and Wang, Jing and Cui, Peng and Yang, Shiqiang},
booktitle={Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence},
pages={3564--3570},
year={2018}
}
```