Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://jbloomaus.github.io/SAELens/
Training Sparse Autoencoders on Language Models
https://jbloomaus.github.io/SAELens/
Last synced: 4 days ago
JSON representation
Training Sparse Autoencoders on Language Models
- Host: GitHub
- URL: https://jbloomaus.github.io/SAELens/
- Owner: jbloomAus
- License: mit
- Created: 2023-11-29T10:37:55.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-08-18T10:40:24.000Z (5 months ago)
- Last Synced: 2024-08-18T11:13:17.049Z (5 months ago)
- Language: HTML
- Homepage: https://jbloomaus.github.io/SAELens/
- Size: 165 MB
- Stars: 313
- Watchers: 8
- Forks: 86
- Open Issues: 21
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: docs/contributing.md
- License: LICENSE
- Roadmap: docs/roadmap.md
Awesome Lists containing this project
- Awesome-Local-LLM - Link
- Awesome-Local-LLM - Link
README
# SAE Lens
[![PyPI](https://img.shields.io/pypi/v/sae-lens?color=blue)](https://pypi.org/project/sae-lens/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![build](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml)
[![Deploy Docs](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml)
[![codecov](https://codecov.io/gh/jbloomAus/SAELens/graph/badge.svg?token=N83NGH8CGE)](https://codecov.io/gh/jbloomAus/SAELens)SAELens exists to help researchers:
- Train sparse autoencoders.
- Analyse sparse autoencoders / research mechanistic interpretability.
- Generate insights which make it easier to create safe and aligned AI systems.Please refer to the [documentation](https://jbloomaus.github.io/SAELens/) for information on how to:
- Download and Analyse pre-trained sparse autoencoders.
- Train your own sparse autoencoders.
- Generate feature dashboards with the [SAE-Vis Library](https://github.com/callummcdougall/sae_vis/tree/main).SAE Lens is the result of many contributors working collectively to improve humanity's understanding of neural networks, many of whom are motivated by a desire to [safeguard humanity from risks posed by artificial intelligence](https://80000hours.org/problem-profiles/artificial-intelligence/).
This library is maintained by [Joseph Bloom](https://www.jbloomaus.com/) and [David Chanin](https://github.com/chanind).
## Loading Pre-trained SAEs.
Pre-trained SAEs for various models can be imported via SAE Lens. See this [page](https://jbloomaus.github.io/SAELens/sae_table/) in the readme for a list of all SAEs.
## Tutorials- [SAE Lens + Neuronpedia](tutorials/tutorial_2_0.ipynb)[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/tutorial_2_0.ipynb)
- [Loading and Analysing Pre-Trained Sparse Autoencoders](tutorials/basic_loading_and_analysing.ipynb)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/basic_loading_and_analysing.ipynb)
- [Understanding SAE Features with the Logit Lens](tutorials/logits_lens_with_features.ipynb)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/logits_lens_with_features.ipynb)
- [Training a Sparse Autoencoder](tutorials/training_a_sparse_autoencoder.ipynb)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/training_a_sparse_autoencoder.ipynb)## Join the Slack!
Feel free to join the [Open Source Mechanistic Interpretability Slack](https://join.slack.com/t/opensourcemechanistic/shared_invite/zt-2k0id7mv8-CsIgPLmmHd03RPJmLUcapw) for support!
## Citation
Please cite the package as follows:
```
@misc{bloom2024saetrainingcodebase,
title = {SAELens},
author = {Joseph Bloom, Curt Tigges and David Chanin},
year = {2024},
howpublished = {\url{https://github.com/jbloomAus/SAELens}},
}
```