Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://jbryer.github.io/likert/
Package to analyze likert based items.
https://jbryer.github.io/likert/
Last synced: about 2 months ago
JSON representation
Package to analyze likert based items.
- Host: GitHub
- URL: https://jbryer.github.io/likert/
- Owner: jbryer
- Created: 2012-05-04T14:02:08.000Z (over 12 years ago)
- Default Branch: master
- Last Pushed: 2024-02-28T18:12:12.000Z (10 months ago)
- Last Synced: 2024-11-09T06:18:09.853Z (about 2 months ago)
- Language: HTML
- Size: 15.3 MB
- Stars: 310
- Watchers: 21
- Forks: 124
- Open Issues: 29
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
### Analysis and Visualization of Likert Based Items
**Author: [Jason Bryer, Ph.D.](mailto:[email protected])**
**Website: **[![Build Status](https://api.travis-ci.org/jbryer/likert.svg)](https://travis-ci.org/jbryer/likert?branch=master)
[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/likert)](http://cran.r-project.org/package=likert)
![Downloads](http://cranlogs.r-pkg.org/badges/likert)`likert` is an R package designed to help analyzing and visualizing Likert type items. More information can be obtained at https://jbryer.github.io/likert. Also, the [included demo](https://github.com/jbryer/likert/blob/master/demo/likert.R) demonstrates many of the features.
Download the 2013 useR! Conference [abstract](https://github.com/jbryer/likert/raw/master/slides/useR%202013/Abstract/Speerschneider.Bryer.likert.pdf) and [slides](https://github.com/jbryer/likert/raw/master/slides/useR%202013/Slides/Slides.pdf).
![Reading Attitude](http://bryer.org/images/likert/centeredPlot1.png)
![Reading Attitude with Histogram](http://bryer.org/images/likert/centeredPlot2.png)The latest development version can be downloaded using the `devtools` package.
```
remotes::install_github('jbryer/likert')
```To get started take a look at the [likert demo](https://github.com/jbryer/likert/blob/master/demo/likert.R) or from within R:
```
demo('likert', package='likert')
```Or run the [Shiny app](http://rstudio.com/shiny):
```
shinyLikert()
``