Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://liuyuan-pal.github.io/NeuRay/

[CVPR2022] Neural Rays for Occlusion-aware Image-based Rendering
https://liuyuan-pal.github.io/NeuRay/

nerf neural-rendering novel-view-synthesis radiance-field

Last synced: 3 months ago
JSON representation

[CVPR2022] Neural Rays for Occlusion-aware Image-based Rendering

Awesome Lists containing this project

README

        

# NeuRay

Rendered video without training on the scene.

![](assets/desktop.gif)

## [Project page](https://liuyuan-pal.github.io/NeuRay/) | [Paper](https://arxiv.org/abs/2107.13421)

## Todo List

- [x] Generalization models and rendering codes.
- [x] Training of generalization models.
- [x] Finetuning codes and finetuned models.

## Usage
### Setup
```shell
git clone [email protected]:liuyuan-pal/NeuRay.git
cd NeuRay
pip install -r requirements.txt
```

Dependencies

- torch==1.7.1
- opencv_python==4.4.0
- tensorflow==2.4.1
- numpy==1.19.2
- scipy==1.5.2

### Download datasets and pretrained models
1. Download processed datasets: [DTU-Test](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/ESZ5vNtkX6dJlJKt_xoJXkMBwLHmPvnXF0UQhaJQIw858w?e=u2DqHd) / [LLFF](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/EbI1OMqOjOdEtS3NqNguPXsBXOfEnG0MWMmD0If-7OR4dg?e=bf6Pvu) / [NeRF Synthetic](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/Ec7yNxwmVbBDmccPar34yOgBwGDyztVfpV-XRIhyKLEg2Q?e=gYKSTm).
2. Download pretrained model [NeuRay-Depth](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/EZAC_ae_zExMu-A393Hl3U0B7tYhSHvmyK8MkDX7Q2sNfw?e=vQ0DUl) and [NeuRay-CostVolume](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/ERzZxknfEP5ErHBnFNP2AAYBRs99KmFkZUXj8rTu23Fv4g?e=uo6Euu).
3. Organize datasets and models as follows
```
NeuRay
|-- data
|--model
|-- neuray_gen_cost_volume
|-- neuray_gen_depth
|-- dtu_test
|-- llff_colmap
|-- nerf_synthetic
```

### Render
```shell
# render on lego of the NeRF synthetic dataset
python render.py --cfg configs/gen/neuray_gen_depth.yaml \
--database nerf_synthetic/lego/black_800 \ # nerf_synthetic/lego/black_400
--pose_type eval

# render on snowman of the DTU dataset
python render.py --cfg configs/gen/neuray_gen_depth.yaml \
--database dtu_test/snowman/black_800 \ # dtu_test/snowman/black_400
--pose_type eval

# render on fern of the LLFF dataset
python render.py --cfg configs/gen/neuray_gen_depth.yaml \
--database llff_colmap/fern/high \ # llff_colmap/fern/low
--pose_type eval
```
The rendered images locate in `data/render//-pretrain-eval/`.
If the `pose_type` is `eval`, we also generate ground-truth images in `data/render//gt`.

#### Explanation on parameters of `render.py`.

- `cfg` is the path to the renderer config file, which can also be `configs/gen/neuray_gen_cost_volume.yaml`
- `database` is a database name consisting of `//`.
- `nerf_synthetic/lego/black_800` means the scene "lego" from the "nerf_synthetic" dataset using "black" background and the resolution "800X800".
- `dtu_test/snowman/black_800` means the scene "snowman" from the "dtu_test" dataset using "black" background and the resolution "800X600".
- `llff_colmap/fern/high` means the scene "fern" from the "llff_colmap" dataset using "high" resolution (1008X756).
- We may also use `llff_colmlap/fern/low` which renders with "low" resolution (504X378)

### Evaluation

```shell
# psnr/ssim/lpips will be printed on screen
python eval.py --dir_pr data/render//-pretrain-eval \
--dir_gt data/render//gt

# example of evaluation on "fern".
# note we should already render images in the "dir_pr".
python eval.py --dir_pr data/render/llff_colmap/fern/high/neuray_gen_depth-pretrain-eval \
--dir_gt data/render/llff_colmap/fern/high/gt
```

### Render on custom scenes

To render on custom scenes, please refer to [this](custom_rendering.md)

## Generalization model training

### Download training sets

1. Download [Google Scanned Objects](https://github.com/googleinterns/IBRNet#e-google-scanned-objects), [RealEstate10K](https://github.com/googleinterns/IBRNet#d-realestate10k)
[Space Dataset](https://github.com/googleinterns/IBRNet#c-spaces-dataset) and [LLFF released Scenes](https://github.com/googleinterns/IBRNet#b-llff-released-scenes) from [IBRNet](https://github.com/googleinterns/IBRNet).
2. ~~Download colmap depth for forward-facing scenes at [here](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/EX0M0c_DyUFDiz1c-ebSO_oBTEeWk8jRYNwCHMgbFH0Pww?e=bO9stn).~~
3. Download [DTU](https://roboimagedata.compute.dtu.dk/?page_id=36) training images at [here](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/EXcPUeyIqAdHrS2LUCmrRJwB8UN0QItiPBm90YuldNm0Ig?e=2POyCI).
4. ~~Download colmap depth for DTU training images at [here](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/EfkjOG2b1epNl322dE3EOeQBAm_Ncver5EmPN4mOZE0ZnA?e=R975nx).~~
5. The COLMAP depth maps are not available anymore. You may need to run the COLMAP by yourself.

Rename directories and organize datasets like
```shell
NeuRay
|-- data
|-- google_scanned_objects
|-- real_estate_dataset # RealEstate10k-subset
|-- real_iconic_noface
|-- spaces_dataset
|-- colmap_forward_cache
|-- dtu_train
|-- colmap_dtu_cache
```

### Train generalization model

Train the model with NeuRay initialized from the estimated depth of COLMAP.
```shell
python run_training.py --cfg configs/train/gen/neuray_gen_depth_train.yaml
```

Train the model with NeuRay initialized from constructed cost volumes.
```shell
python run_training.py --cfg configs/train/gen/neuray_gen_cost_volume_train.yaml
```

Models will be saved at `data/model`. On every 10k steps, we will validate the model and images will be saved at `data/vis_val/-`

### Render with trained models
```shell
python render.py --cfg configs/gen/neuray_gen_depth_train.yaml \
--database llff_colmap/fern/high \
--pose_type eval
```

## Scene-specific finetuning

### Finetuning
```shell
# finetune on lego from the NeRF synthetic dataset
python run_training.py --cfg configs/train/ft/neuray_ft_depth_lego.yaml

# finetune on fern from the LLFF dataset
python run_training.py --cfg configs/train/ft/neuray_ft_depth_fern.yaml

# finetune on birds from the DTU dataset
python run_training.py --cfg configs/train/ft/neuray_ft_depth_birds.yaml

# finetune the model initialized from cost volume
python run_training.py --cfg configs/train/ft/neuray_ft_cv_lego.yaml
```
The finetuned models will be saved at `data/model`.

### Finetuned models
We provide the finetuned models on the NeRF synthetic datasets at [here](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/yuanly_connect_hku_hk/EZsnVJ4qkTRLtcaF5WdnLhcBfU3BOjTTbVbWV6Id2bEPNg?e=lderS0).

Download the models and organize files like
```shell
NeuRay
|-- data
|-- model
|-- neuray_ft_lego_pretrain
|-- neuray_ft_chair_pretrain
...
```

### Render with finetuned models
```shell
# render on lego of the NeRF synthetic dataset
python render.py --cfg configs/ft/neuray_ft_lego_pretrain.yaml \
--database nerf_synthetic/lego/black_800 \
--pose_type eval \
--render_type ft
```

## Code explanation

We have provided explanation on variable naming convention in [here](codes_explanations.md) to make our codes more readable.

## Acknowledgements
In this repository, we have used codes or datasets from the following repositories.
We thank all the authors for sharing great codes or datasets.

- [IBRNet](https://github.com/googleinterns/IBRNet)
- [MVSNet-official](https://github.com/YoYo000/MVSNet) and [MVSNet-kwea123](https://github.com/kwea123/CasMVSNet_pl)
- [BlendedMVS](https://github.com/YoYo000/BlendedMVS)
- [NeRF-official](https://github.com/bmild/nerf) and [NeRF-torch](https://github.com/yenchenlin/nerf-pytorch)
- [MVSNeRF](https://github.com/apchenstu/mvsnerf)
- [PixelNeRF](https://github.com/sxyu/pixel-nerf)
- [COLMAP](https://github.com/colmap/colmap)
- [IDR](https://lioryariv.github.io/idr/)
- [RealEstate10K](https://google.github.io/realestate10k/)
- [DeepView](https://augmentedperception.github.io/deepview/)
- [Google Scanned Objects](https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects)
- [LLFF](https://github.com/Fyusion/LLFF)
- [DTU](https://roboimagedata.compute.dtu.dk/?page_id=36)

## Citation
```
@inproceedings{liu2022neuray,
title={Neural Rays for Occlusion-aware Image-based Rendering},
author={Liu, Yuan and Peng, Sida and Liu, Lingjie and Wang, Qianqian and Wang, Peng and Theobalt, Christian and Zhou, Xiaowei and Wang, Wenping},
booktitle={CVPR},
year={2022}
}
```