Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://sirui-xu.github.io/DuMMF/
[ICLR 2023 spotlight] Official PyTorch implementation of the paper "Stochastic Multi-Person 3D Motion Forecasting"
https://sirui-xu.github.io/DuMMF/
Last synced: 3 months ago
JSON representation
[ICLR 2023 spotlight] Official PyTorch implementation of the paper "Stochastic Multi-Person 3D Motion Forecasting"
- Host: GitHub
- URL: https://sirui-xu.github.io/DuMMF/
- Owner: Sirui-Xu
- Created: 2023-03-02T03:02:58.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-09-01T01:59:00.000Z (over 1 year ago)
- Last Synced: 2024-08-03T04:06:15.004Z (6 months ago)
- Language: Python
- Size: 12.2 MB
- Stars: 49
- Watchers: 5
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-conditional-content-generation - Stochastic Multi-Person 3D Motion Forecasting
README
# [ICLR 2023] Stochastic Multi-Person 3D Motion Forecasting
## Introduction
This is the official implementation of "[Stochastic Multi-Person 3D Motion Forecasting](https://arxiv.org/abs/2306.05421)."
## What's New
* [version 1.0] Code for diffusion-based DuMMF.## Citation
If you find our code or paper useful, please cite by:
```bibtex
@inproceedings{
xu2023stochastic,
title={Stochastic Multi-Person 3D Motion Forecasting},
author={Xu, Sirui and Wang, Yu-Xiong and Gui, Liangyan},
booktitle={ICLR},
year={2023},
}
```