Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://yhzhai.github.io/idol/
[ECCV 2024] IDOL: Unified Dual-Modal Latent Diffusion for Human-Centric Joint Video-Depth Generation
https://yhzhai.github.io/idol/
aigc depth-generation human-generation multi-modal-generation
Last synced: about 2 months ago
JSON representation
[ECCV 2024] IDOL: Unified Dual-Modal Latent Diffusion for Human-Centric Joint Video-Depth Generation
- Host: GitHub
- URL: https://yhzhai.github.io/idol/
- Owner: yhZhai
- License: apache-2.0
- Created: 2024-07-02T15:02:02.000Z (6 months ago)
- Default Branch: main
- Last Pushed: 2024-09-16T18:24:40.000Z (3 months ago)
- Last Synced: 2024-09-17T00:06:24.119Z (3 months ago)
- Topics: aigc, depth-generation, human-generation, multi-modal-generation
- Homepage: https://yhzhai.github.io/idol/
- Size: 31.8 MB
- Stars: 44
- Watchers: 12
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-diffusion-categorized - [Project
- Awesome-Human-Video-Generation - IDOL
README
# [💃 IDOL: Unified Dual-Modal Latent Diffusion for Human-Centric Joint Video-Depth Generation](https://yhzhai.github.io/idol/)
[Yuanhao Zhai](https://www.yhzhai.com/)1, [Kevin Lin](https://sites.google.com/site/kevinlin311tw/)2, [Linjie Li](https://scholar.google.com/citations?hl=en&user=WR875gYAAAAJ)2, [Chung-Ching Lin](https://scholar.google.com/citations?hl=en&user=legkbM0AAAAJ)2, [Jianfeng Wang](http://jianfengwang.me)2, [Zhengyuan Yang](https://zyang-ur.github.io)2, [David Doermann](https://cse.buffalo.edu/~doermann/)1, [Junsong Yuan](https://cse.buffalo.edu/~jsyuan/)1, [Zicheng Liu](https://scholar.google.com/citations?hl=en&user=bkALdvsAAAAJ)3, [Lijuan Wang](https://scholar.google.com/citations?hl=en&user=cDcWXuIAAAAJ)2
1State University of New Yort at Buffalo  |  2Microsoft  |  3Advanced Micro Devices
**European Conference on Computer Vision (ECCV) 2024**
Â
**TL;DR**: Our IDOL enables human-centric joint video-depth generation, which could be rendered into realistic 2.5 videos.
![](static/images/teaser.png)
**All code and checkpoints will be released soon!**