An open API service indexing awesome lists of open source software.

https://yushiangw.github.io/factorednerf/

The repository of FactoredNeRF (SGP2023)
https://yushiangw.github.io/factorednerf/

Last synced: 25 days ago
JSON representation

The repository of FactoredNeRF (SGP2023)

Awesome Lists containing this project

README

        

# Factored Neural Representation for Scene Understanding
[[Project Website]](https://geometry.cs.ucl.ac.uk/projects/2023/factorednerf/)
[[Arxiv]](https://arxiv.org/abs/2304.10950)
[[Dataset (6GB)]](https://geometry.cs.ucl.ac.uk/projects/2023/factorednerf/paper_docs/dataset)

![a](./assets/gif/a_train_rgb.gif)
![b](./assets/gif/b_train_rgb.gif)
![c](./assets/gif/c_train_rgb.gif)

---

## Installation:

1. cd to the unzip directory

2. build our docker image
````docker build -t factnerf -f Dockerfile . ````

3. download our dataset and put it at $FACTNERF_ROOT/data
````
$FACTNERF_ROOT/data/SYN
$FACTNERF_ROOT/data/SYN/sce_a_train
...
````

## Run in a Docker container:

````
export FACTNERF_ROOT=$(pwd)

# check if input data exists
ls $FACTNERF_ROOT/data

# set GPU
export CUDA_VISIBLE_DEVICES=0

````
Training
````
cd $FACTNERF_ROOT
python framework/run_main.py -f configs/SYN/factorednerf/sce_a.yaml --mode train
````

Rendering
````
#faster rendering using a smaller resolution
python framework/run_main.py -f configs/SYN/factorednerf/sce_a.yaml --mode render_valid_q -c map__final --dw 4 --fnum 4

# rendering (no downsampling)
python framework/run_main.py -f configs/SYN/factorednerf/sce_a.yaml --mode render_valid_q -c map__final --dw 1

````

## Checkpoints
Please download the checkpoint file [output-syn.zip](https://geometry.cs.ucl.ac.uk/projects/2023/factorednerf/paper_docs/dataset/) and unzip to $FACTNERF_ROOT

## Acknowledgement and Licenses
Some codes are adapted from the awesome repositories: [NiceSlam](
https://github.com/cvg/nice-slam) and [Neural Scene Graphs](https://github.com/princeton-computational-imaging/neural-scene-graphs). We appreciated their efforts in open-sourcing their implementation. We also thank the authors of [DeformingThings4D](https://github.com/rabbityl/DeformingThings4D) for allowing us to upload our synthetic dataset. Please be aware of all corresponding licenses.

## Citation
````
@misc{wong2023factored,
title={Factored Neural Representation for Scene Understanding},
author={Yu-Shiang Wong and Niloy J. Mitra},
year={2023},
eprint={2304.10950},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
````