Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
Awesome-Table-Recognition
A curated list of resources dedicated to table recognition
https://github.com/cv-small-snails/Awesome-Table-Recognition
Last synced: 5 days ago
JSON representation
-
1. Papers
- LORE: Logical Location Regression Network for Table Structure Recognition
- TSRFormer: Table Structure Recognition with Transformers
- TableFormer: Table Structure Understanding with Transformers.
- Neural Collaborative Graph Machines for Table Structure Recognition
- PubTables-1M: Towards comprehensive table extraction from unstructured documents - transformer)<br>![](https://img.shields.io/github/stars/microsoft/table-transformer.svg?style=social) |
- Multi-Type-TD-TSR -- Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition: from OCR to Structured Table Representations - Type-TD-TSR)<br>![](https://img.shields.io/github/stars/Psarpei/Multi-Type-TD-TSR.svg?style=social) |
- Parsing Table Structures in the Wild
- TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition
- ICDAR 2021 Competition on Scientific Literature Parsing - aur-nlp/PubLayNet)<br>![](https://img.shields.io/github/stars/ibm-aur-nlp/PubLayNet.svg?style=social) |
- PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML - mmocr)<br>![](https://img.shields.io/github/stars/JiaquanYe/TableMASTER-mmocr.svg?style=social) |
- LGPMA: Complicated Table Structure Recognition with Local and Global Pyramid Mask Alignment - Lab-OCR)<br>![](https://img.shields.io/github/stars/hikopensource/DAVAR-Lab-OCR.svg?style=social) |
- Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context
- CascadeTabNet: An approach for end to end table detection and structure recognition from image-based documents
- Image-based table recognition: data, model, and evaluation - aur-nlp/PubTabNet)<br>![](https://img.shields.io/github/stars/ibm-aur-nlp/PubTabNet.svg?style=social) |
- Table structure recognition using top-down and bottom-up cues
- TableBank: A Benchmark Dataset for Table Detection and Recognition - analysis/TableBank)<br>![](https://img.shields.io/github/stars/doc-analysis/TableBank.svg?style=social) |
- Complicated table structure recognition - Hammer/SciTSR)<br>![](https://img.shields.io/github/stars/Academic-Hammer/SciTSR.svg?style=social) |
- Rethinking Table Recognition using Graph Neural Networks - 2.0)<br>![](https://img.shields.io/github/stars/shahrukhqasim/TIES-2.0.svg?style=social) |
- Tablenet: Deep learning model for end-to-end table detection and tabular data extraction from scanned document images
- Res2tim: Reconstruct syntactic structures from table images.
- Deepdesrt: Deep learning for detection and structure recognition of tables in document images
- LORE: Logical Location Regression Network for Table Structure Recognition
- TableFormer: Table Structure Understanding with Transformers.
- PubTables-1M: Towards comprehensive table extraction from unstructured documents - transformer)<br>![](https://img.shields.io/github/stars/microsoft/table-transformer.svg?style=social) |
- Multi-Type-TD-TSR -- Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition: from OCR to Structured Table Representations - Type-TD-TSR)<br>![](https://img.shields.io/github/stars/Psarpei/Multi-Type-TD-TSR.svg?style=social) |
- ICDAR 2021 Competition on Scientific Literature Parsing - aur-nlp/PubLayNet)<br>![](https://img.shields.io/github/stars/ibm-aur-nlp/PubLayNet.svg?style=social) |
- PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML - mmocr)<br>![](https://img.shields.io/github/stars/JiaquanYe/TableMASTER-mmocr.svg?style=social) |
- LGPMA: Complicated Table Structure Recognition with Local and Global Pyramid Mask Alignment - Lab-OCR)<br>![](https://img.shields.io/github/stars/hikopensource/DAVAR-Lab-OCR.svg?style=social) |
- CascadeTabNet: An approach for end to end table detection and structure recognition from image-based documents
- Image-based table recognition: data, model, and evaluation - aur-nlp/PubTabNet)<br>![](https://img.shields.io/github/stars/ibm-aur-nlp/PubTabNet.svg?style=social) |
- Complicated table structure recognition - Hammer/SciTSR)<br>![](https://img.shields.io/github/stars/Academic-Hammer/SciTSR.svg?style=social) |
- Rethinking Table Recognition using Graph Neural Networks - 2.0)<br>![](https://img.shields.io/github/stars/shahrukhqasim/TIES-2.0.svg?style=social) |
- Tablenet: Deep learning model for end-to-end table detection and tabular data extraction from scanned document images
- Show, Read and Reason: Table Structure Recognition with Flexible Context Aggregator
- Divide Rows and Conquer Cells: Towards Structure Recognition for Large Tables
- Neural Collaborative Graph Machines for Table Structure Recognition
-
2. Datasets
-
2.1 Introduction
-
-
3. Other technical solutions
-
PRCV2021 Table Recognition Technology Challenge
-
ICDAR 2021 Competition on Scientfic Literature Parsing TaskB: Table Recognition to HTML
-
Programming Languages
Sub Categories
Keywords
table-structure-recognition
2
table-detection
2
pdf-to-text
1
pdf2txt
1
table-extraction
1
table-functional-analysis
1
classification
1
cnn
1
convolutional-neural-networks
1
deep-learning
1
image-classification
1
mmdetection
1
object-detection
1
object-recognition
1
pytorch
1
table
1
table-recognition
1