Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
Awesome-shiny-apps-for-statistics
🌟 A curated list of Awesome Shiny Apps for Statistics (ASAS)🌟
https://github.com/huyingjie/Awesome-shiny-apps-for-statistics
Last synced: about 7 hours ago
JSON representation
-
<a id="Common-plots"></a>Common Plots
-
<a id="Common-Statistic"></a>Common Statistic
- Stability of Mean & Median
- Correlation
- When does a significant p-value indicate a true effect?
- Hack p-value
- the Vovk-Sellke maximum p-ratio - the maximum diagnosticity of a two-sided p-value.
- Stability of Mean & Median
- When does a significant p-value indicate a true effect?
-
<a id="Common-Distribution"></a>Common Distribution
-
<a id="Random-Samples"></a>Random Samples
-
<a id="Two-groups-or-multiple-groups-comparison"></a>Two groups or multiple groups comparison
-
<a id="Hypothesis-Testing"></a>Hypothesis Testing
- Bootstrap resampling - Demonstrate hypothesis testing using bootstrap resampling.
- Power - Demonstrate the relationship of statistical power, effect size, and false positives
- Calculate power - Calculat the power of a statistical hypothesis test for a two-sided symmetrical test and show how statistical power is related to the p-value and the significance level.
- Trade Off - Visualize the trade off between type I and type II errors in a Null Hypothesis Significance Test (NHST).
-
<a id="Linear-Regression"></a> Linear Regression
- Simple linear regression
- Sum of Square in simple linear regression - Explore how sums of squares are calculated in simple linear regressions.
- Fit a simple linear regression model
- Diagnostics for simple linear regression
- Uncertainty
- Influence analysis - Demonstrates the leverage and influence of an adjustable point/outliers
- Graphs for linear regression with high orders
- Multicollinearity
- Model selection - Choose models between simple regression, additive regression, and interactive models.
- Residual error models
- Meta analysis
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
- Residual error models
-
<a id="Nonlinear-models-for-continous-variables"></a>Nonlinear Models for Continous Variables
-
K-means Clustering
-
-
<a id="Categorical-Models"></a>Categorical Models
-
K-means Clustering
-
-
<a id="Survival-Model"></a>Survival Model
-
K-means Clustering
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
- Hazard model
-
-
<a id="Bayesian-Analysis"></a>Bayesian Analysis
-
K-means Clustering
- Bayes factors
- Robustness analysis for Bayes factors: Two sample t test
- Bayesian Inference
- Posterior distribution - judgement-project-and-bayes/) - Calculate posterior distribution based on different priors
- Binomial & Normal Distribution
-
-
<a id="Longitudinal-Analysis"></a>Longitudinal Analysis
-
K-means Clustering
-
-
<a id="Test-Analysis"></a>Test Analysis
-
K-means Clustering
-
-
<a id="Complete-Data-Analysis"></a>Complete Data Analysis
-
K-means Clustering
-
-
<a id="Help-Wanted"></a>Help Wanted
-
K-means Clustering
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
- the website
-
-
<a id="Resources"></a>Resources
- Awesome R Shiny - A curated list of resources for R Shiny.
Programming Languages
Categories
<a id="Survival-Model"></a>Survival Model
32
<a id="Help-Wanted"></a>Help Wanted
30
<a id="Linear-Regression"></a> Linear Regression
25
<a id="Common-Statistic"></a>Common Statistic
7
<a id="Two-groups-or-multiple-groups-comparison"></a>Two groups or multiple groups comparison
5
<a id="Bayesian-Analysis"></a>Bayesian Analysis
5
<a id="Hypothesis-Testing"></a>Hypothesis Testing
4
License
4
<a id="Common-Distribution"></a>Common Distribution
3
<a id="Random-Samples"></a>Random Samples
3
<a id="Common-plots"></a>Common Plots
2
<a id="Nonlinear-models-for-continous-variables"></a>Nonlinear Models for Continous Variables
2
<a id="Test-Analysis"></a>Test Analysis
2
<a id="Categorical-Models"></a>Categorical Models
1
<a id="Longitudinal-Analysis"></a>Longitudinal Analysis
1
<a id="Complete-Data-Analysis"></a>Complete Data Analysis
1
<a id="Resources"></a>Resources
1
Sub Categories
Keywords