Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-deep-reinforcement-learning
Curated list for Deep Reinforcement Learning (DRL): software frameworks, models, datasets, gyms, baselines...
https://github.com/jgvictores/awesome-deep-reinforcement-learning
Last synced: 2 days ago
JSON representation
-
Neural Networks (NN) and Deep Neural Networks (DNN)
-
NN/DNN Datasets
- PASCAL VOC
- MIT MM Stimuli
- SVHN
- Visual Genome
- HowTo100M
- text8
- UMICH SI650
- wikipedia
- DOI: 10.1145/3447526.3472059
- awesomedata/awesome-public-datasets
- MIT Places
- MNIST - MNIST](https://github.com/rois-codh/kmnist).
- CIFAR-100
-
NN/DNN Pretrained Models
- keras web - team/keras/tree/master/keras/applications), [keras 2](https://github.com/keras-team/keras-applications), [pytorch](https://pytorch.org/docs/stable/torchvision/models.html), [caffe](https://github.com/BVLC/caffe/wiki/Model-Zoo), [ONNX](https://github.com/onnx/models) (pytorch/caffe2).
- keras
- keras by keras - team/keras/tree/e15533e6c725dca8c37a861aacb13ef149789433/keras/applications)) / [keras by kaggle](https://www.kaggle.com/keras) / [pytorch by kaggle](https://www.kaggle.com/pytorch)
- keras
- keras
- caffe by original VGG author
- gensim
-
NN/DNN Techniques Misc
-
NN/DNN Visualization and Explanation
- keras - deep-learning-neural-network-model-keras/), [2](https://github.com/keplr-io/quiver), [3](https://raghakot.github.io/keras-vis/), [4](https://www.kaggle.com/amarjeet007/visualize-cnn-with-keras)
- tensorboard
-
NN/DNN Software Frameworks
- presentation - deep-reinforcement-learning/blob/143a885cc10b4331b9b3fa3e1a9436d5325676af/doc/inria2017DLFrameworks.pdf)).
- safari
- safari
- 1
- DALI - accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
- Sonnet
- ml5
- Torch
- CoreML - C) (support: Apple)
- OpenNN
- Caffe
- 1 - docker), [3](https://github.com/bethgelab/docker-deeplearning).
- 1
- pytorch/pytorch - commit/pytorch/pytorch?label=last%20update)
- keras-team/keras - team/keras)](https://github.com/keras-team/keras/stargazers) ![GitHub last commit](https://img.shields.io/github/last-commit/keras-team/keras?label=last%20update)
- tensorflow/tensorflow - level) (API: Python most stable, JavaScript, C++, Java...) (support: Google). [![GitHub stars](https://img.shields.io/github/stars/tensorflow/tensorflow)](https://github.com/tensorflow/tensorflow/stargazers) ![GitHub last commit](https://img.shields.io/github/last-commit/tensorflow/tensorflow?label=last%20update)
- flashlight/flashlight - commit/flashlight/flashlight?label=last%20update)
- https://github.com/janhuenermann/neurojs - commit/janhuenermann/neurojs?label=last%20update)
- 1
- 1
- oneapi-src/oneDNN
- sony/nnabla
- 1
- jittor
- PaddlePaddle
- GitHub
- GitHub
- GitHub
- DL4J
- GitHub
- PyBrain
-
NN/DNN Models
- 1
- arxiv - fcis).
- arxiv - freiburg.de/people/ronneber/u-net/).
- arxiv
- arxiv - Single-Shot-MultiBox-Detector)
- arxiv
- arxiv - brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4)): Fast R-CNN, Faster R-CNN, Mask R-CNN.
- 1 - tricks.com/cnn/understand-resnet-alexnet-vgg-inception/), [3](https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5)
- arxiv
- arxiv
- arxiv
- arxiv
- arxiv - 3 weeks.
- arxiv - 7 million parameters, via smaller convs. A more aggressive cropping approach than that of Krizhevsky. Batch normalization, image distortions, RMSprop. Uses 9 novel "Inception modules" (at each layer of a traditional ConvNet, you have to make a choice of whether to have a pooling operation or a conv operation as well as the choice of filter size; an Inception module performa all these operations in parallel), and no fully connected. Trained on CPU (estimated as weeks via GPU) implemented in DistBelief (closed-source predecessor of TensorFlow). Variants ([summary](https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202)): v1, v2, v4, resnet v1, resnet v2; v9 ([slides](http://lsun.cs.princeton.edu/slides/Christian.pdf)). Also see [Xception (2017)](https://arxiv.org/pdf/1610.02357.pdf) paper.
- arxiv
- doi - justified finer tuning and visualization (namely Deconvolutional Network).
- doi
- Geometric deep learning
- ref
- tensorflow
- arxiv - painterly-harmonization)
- arxiv - photo-styletransfer)
- arxiv - style), keras [1](https://github.com/keras-team/keras/blob/master/examples/neural_style_transfer.py) [2](https://github.com/titu1994/Neural-Style-Transfer) [3](https://github.com/handong1587/handong1587.github.io/blob/master/_posts/deep_learning/2015-10-09-fun-with-deep-learning.md) [4](https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216)
- arxiv - pytorch)
- arxiv
- arxiv - Adversarial-Networks)
- arxiv
- arxiv
- FTTNet - Time Speaker-Dependent Neural Vocoder". [pytorch](https://github.com/mozilla/FFTNet)
- keras
- keras - image-similarity)
- arxiv
- wikipedia
- 1
- ref
- 1
- 1
- facebookresearch/Detectron
- thunlp/GNNPapers
- chihming/awesome-network-embedding
- DLG
- pytorch
- tensorflow/gnn
- pytorch
- ref
- caffe
- hindupuravinash/the-gan-zoo
- CycleGAN - Yan Zhu et Al; Berkeley; "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks". [torch](https://github.com/junyanz/CycleGAN) and migrated to [pytorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
- 1
- ref
- 1
- ref
- 1
- 1
- ref
- 1
- 1
- ref
- 1
- ref
- 1
- ref
- 1
- 1
- 1
- doi
- ref
- 1
- ref
- 1
- facebookresearch/Detectron
- 1
- 1
- 1
- ref
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- ref
- 1
- 1
- ref
- 1
- 1
- ref
- 1
- 1
- 1
- 1
- 1
- ref
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- ref
- 1
- ref
- 1
- ref
- 1
- 1
- 1
- 1
- 1
- doi - 61 million parameters, split into 2 pipelines to enable 5-6 day GTX 580 GPU training (while CPU data augmentation).
- 1
- 1
- 1
- 1
- ref
- 1
- 1
- ref
- ref
- 1
-
-
Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL)
-
RL/DRL Algorithms
- Reinforcement Learning Specialization - 20). Note that another major separation is off/on policy RL algorithms. DRL methods would fit into function approximators.
- Part 2: Kinds of RL Algorithms - Rendered from <https://github.com/openai/spinningup/blob/038665d62d569055401d91856abb287263096178/docs/spinningup/rl_intro2.rst>
-
RL/DRL Algorithm Implementations and Software Frameworks
- RL-Glue - glue-ext/wikis/RLGlueCore.wiki)) (API: C/C++, Java, Matlab, Python, Lisp) (support: Alberta)
-
-
Similar pages
-
RL/DRL Books
-
-
General Machine Learning (ML)
-
General ML Books
-
General ML Software Frameworks
-
Programming Languages
Categories
Sub Categories
NN/DNN Models
128
NN/DNN Software Frameworks
31
NN/DNN Datasets
13
NN/DNN Techniques Misc
8
NN/DNN Pretrained Models
7
RL/DRL Algorithms
3
NN/DNN Visualization and Explanation
2
RL/DRL Books
1
RL/DRL Algorithm Implementations and Software Frameworks
1
General ML Books
1
General ML Software Frameworks
1
Keywords
deep-learning
18
machine-learning
14
neural-network
10
python
7
tensorflow
6
pytorch
5
ml
3
deep-neural-networks
3
torch
3
neural-networks
2
cpp
2
gpu
2
autograd
2
reinforcement-learning
2
gnn
2
computer-vision
2
network-embedding
2
mxnet
2
generative-adversarial-network
2
gan
2
caffe
2
keras
2
caffe2
2
chainer
2
distributed
1
openmp
1
flashlight
1
tbb
1
javascript
1
onednn
1
self-driving-car
1
oneapi
1
chainercv
1
library
1
bfloat16
1
cupy
1
sycl
1
aarch64
1
performance
1
amx
1
avx512
1
aaron-swartz
1
awesome-public-datasets
1
datasets
1
opendata
1
cntk
1
docker-image
1
dockerfile-generator
1
jupyter
1
lasagne
1