Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-industrial-anomaly-detection
Paper list and datasets for industrial image anomaly/defect detection (updating). 工业异常/瑕疵检测论文及数据集检索库(持续更新)。
https://github.com/M-3LAB/awesome-industrial-anomaly-detection
Last synced: 3 days ago
JSON representation
-
ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024 - CLIP)
- [ECCV 2024 - ad)
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024 - Research/Defect_Spectrum)
- [ECCV 2024 - mo.github.io/crad/)[[code]](https://github.com/tae-mo/CRAD)
- [ECCV 2024
- [ECCV2024
- [ECCV 2024
- [ECCV 2024
-
2.1 Feature-Embedding-based Methods
-
2.1.4 Memory Bank
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2020
- [2021
- [2022
- [2022
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [2002 - ->
- [2020
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [2022
- [2022
- [2022
- [2022
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2022
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
-
2.1.2 One-Class Classification (OCC)
-
2.1.1 Teacher-Student
- [2021
- [2021 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2022
- [Multimedia Tools and Applications 2024
- [CVPR 2021
- [CVPR 2021
- [2021
- [2021 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [CASE 2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2022
- [2022
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [CVPR 2020
- [TBD 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [JMS 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [CVPR 2021
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [CVPR 2022 - deng/RD4AD)
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
-
2.1.3 Distribution-Map
- [2021
- [2022
- [2021
- [2022
- [Applied Intelligence 2024
- [2022
- [2022
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [Sensors 2018
- [2021
- [2022
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2021 - Energy-Anomaly-Detection-of-Defect)
- [2021
- [TII 2023
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [ICME 2022
- [Applied Intelligence 2024
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [ICCVDM 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [WACV 2022 - rudolph/cs-flow)
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [2021
- [2021
- [WACV 2022 - ad)
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [2022
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
-
-
Others
- [CVPR 2023 Workshop
- [CASE 2024 - dataset)
- [IJCV 2023 - results)
- [2023
- [2023
- [2023
- [2023
- [IJCV 2023 - results)
- [CVPR Workshop 2023
- [2023
- Dataset Distillation
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [TIM 2022
- [IJCV 2023 - results)
- [2024
- [2024
- [2024
- [2023 - deng/AnoVL)
- [2023
- [2023
- [2023
- [TIP2024
- [2023
- [2023 Section 9.2
- [2023
- [2023
- [2023
-
Medical (related)
- [IJCV 2023 - results)
- [code
- [2024
- [2022
- [2015
- [2020
- [2022
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [2024
- [2023
- [2023
- [2022
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [2024 - XAD)
- [IJCV 2023 - results)
- [2024
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [2024
- [IJCV 2023 - results)
- [CVPR 2024
- [2024
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [TCYB 2024 - 3LAB/open-iad)[[中文]](https://blog.csdn.net/m0_63828250/article/details/136891730)
- [IJCV 2023 - results)
- [TIM 2022
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
-
3.4 RGBD AD
-
Zero-Shot AD
- [WACV 2022
- [2023
- [Neurocomputing 2024
- [2024
- [2024
- [WACV 2022
- [2022 - ADS)
- [2022
- [2023 - cs008/PD-REAL)
-
-
2.2 Reconstruction-Based Methods
-
2.2.1 Autoencoder (AE)
- [2018
- [2021
- [2022
- [2020
- [2021
- [2022
- [2018
- [Sensors 2018
- [TIM 2018
- [2020
- [2021
- [Neurocomputing 2020
- [2021
- [2021
- [2022
- [ICCV 2021
- [2022
- [BMVC 2020
- [2020
- [2022
- [PR 2021
- [2022
- [CVPR 2022 oral
- [TPAMI 2022
- [2019
- [2020
- [2020
- [2020
- [2023
- [2023
- [2021
- [2022
- [2020
- [2021
- [2022
- [2021
- [2022
- [2021
- [2022
- [2020
- [2022
- [2024
- [2020
- [TII 2024
- [TPAMI 2022
- [Neurocomputing 2020
- [2019
-
2.2.2 Generative Adversarial Networks (GANs)
- [PRICAI 2018
- [PRICAI 2018
- [TIP 2023 - gan)
- [AAAI 2021
- [2021
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [2021
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
-
2.2.4 Diffusion Model
-
2.2.3 Transformer
-
-
3.7 Uniform/Multi-Class AD
-
3.8 Logical AD
-
Zero-Shot AD
- [IJCV 2022
- [2023
- [2023
- [TCSVT 2023
- [IJCV 2022
- [2023
- [2024 - 125/segad)
- [2024 - Caption)
- [2024
-
-
Other settings
-
TTT binary segmentation
- CID
- DEEPPCB - | - | 1500 | Bounding box | RGB synthetic | 2019 |
- Eyecandies
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [Computers in Industry 2021
- [2013
- [ACCV 2022 - ai.github.io/eyecandies/)
- [CVPR 2019 - 020-01400-4.pdf) [[data]](https://www.mvtec.com/company/research/datasets/mvtec-ad)
- [VISAPP 2021 - 3d-ad)
- DAGM - | - | 11500 | Segmentation mask | RGB synthetic | 2007 |
- [2022 - 2022.github.io/)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [ECCV 2022 - science/spot-diff)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2024
- [2021 - pipe-weld-defect-detection)
- [TII 2016
- [2015
- [2019
- [2020 - tile-defect-datasets.)
- [2023
- [2023
- [2023 - Workshop/VISION-Datasets)
- [IJRS 2023
- [WACV 2024
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [data 2019
- [IJCV 2022 - loco)
- [2017
- [IJCV 2022 - loco)
- AITEX
- BTAD - | - | 2830 | Segmentation mask | RGB real | 2021 |
- DTD-Synthetic - | - | - | Segmentation mask | RGB synthetic | WACV,2024 |
- GDXray
- KolekrotSDD
- KolekrotSDD2
- MIAD
- MPDD
- MVTec AD
- MVTec 3D-AD
- MVTec LOCO-AD
- NanoTwice
- NEU surface defect
- [Journal of Intelligent Manufacturing
- [TIM 2024 - Defect-Detection)
- [2024
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2019
- [IJCV 2022 - loco)
- [2019 - defects)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
-
-
More Normal samples With (Less Abnormal Samples or Weak Labels)
-
2.2.5 Others
- [2021
- [ECCV 2020
- [ICLR 2020
- [2021 - network-image)
- [WACV 2023
- [2023
- [TSMC 2024
- [CVPR 2022
- [ECCV 2020
- [ECCV 2020
- [ICLR 2020
-
-
More Abnormal Samples
-
2.2.5 Others
- [IJCV 2017
- [IJAMT 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [2021
- [TIP 2021
- [ICRA 2021
- [TIP 2020
- [Robotics and Computer-Integrated Manufacturing 2020
- [Applied Sciences 2019
- [2018
- [Applied Sciences 2018
- [IFAC-PapersOnLine 2018
- [IJCV 2017
- [TIM 2017
- Computing in civil engineering 2017
- [IJAMT 2017
- [Metallurgical & Mining Industry 2015
- [CIRP annals 2016
- [2023 - Attention-U-Net-with-Feature-Infusion-Pushing-the-Boundaries-of-Multiclass-Defect-Segmentation)
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [TIP 2021
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [2024
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [TIP 2021
- [IJCV 2017
- [IJAMT 2017
-
-
3.1 Few-Shot AD
-
2.2.5 Others
- [ECCV 2022 oral - SJTU/RegAD)
- [ICCV 2021
- [ECCV 2022 oral - SJTU/RegAD)
- [2021
- [2023 - few-shot/)
- [(Distribution)WACV 2021
- [2023
- [2024
- [(Memory bank)CVPR 2022
- [ICCV 2021
- [CVPRW 2023
- [2024
- [2021
-
Zero-Shot AD
-
-
3.2 Noisy AD
-
Zero-Shot AD
-
-
3.3 Anomaly Synthetic
-
Zero-Shot AD
- [2020
- [2020
- [2020
- [2019
- [2020
- [2020
- [2020
- [2020
- [BMVC 2022
- [2021
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [(OCC)2022
- [AAAI 2023
- [2020
- [(Reconstruction AE)ICCV 2021
- [IEEE Access 2019
- [2020
- [2020
- [(OCC)ICCV 2021 - cutpaste)
- [2020
- [TII 2022
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2024
- [2020
- [2024
- [2020
- [2020
- [2020
- [2020
- [ECCV 2022
- [ECCV 2022 - synthetic-anomalies)
- [2020
- [2020
- [ECCV 2022
- [2020
- [2020
- [2020
- [2020
-
-
3.7 Logical AD
-
Zero-Shot AD
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [PR 2016
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2017
- [IJCV 2022 - loco)
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022
- [IJCV 2022
-
-
LLM related
- [2023 - 4V-AD)
- [2023
- [2023 - for-Generic-Anomaly-Detection)
- [2024
- [ICCAD 2024
- [2024
- [2024
- [AAAI 2024 - IVA-Lab/AnomalyGPT)[[project page]](https://anomalygpt.github.io/)
- [2024
- [2024
-
CVPR 2023
-
SAM segment anything
- [AAAI 2024
- [2023 SAM tech report
- [2023 SAM tech report
- [2023 SAM tech report
- [2023
- [2023 - zero-shot-anomaly-detection)
- [2023
- [2024
- [AAAI 2024
-
NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023 - shot-ad-via-batch-norm)
- [NeurIPS 2023 - Trans)
- [NeurIPS 2023 - 3LAB/Real3D-AD)[[中文]](https://blog.csdn.net/m0_63828250/article/details/136667168)
-
ICLR 2023
-
CVPR 2024
- [CVPR 2024
- [CVPR 2024
- [CVPR 2024 - 125/segad)
- [CVPR 2024 - Chen/PE-MIL)
- [CVPR 2024 - UoE/Looking3D)
- [CVPR 24 Visual Anomaly Detection Workshop
- [CVPR 2024 - lab/AHL)
- [CVPR 2024 - 0/PromptAD)
- [CVPR 2024
- [Challenge and Call for Papers
- [CVPR 2024 - lab/InCTRL)
- [CVPR 2024 - IAD)[[data]](https://realiad4ad.github.io/Real-IAD/)
- [CVPR 2024
- [CVPR 2024 - 233/Anomaly-ShapeNet)
-
3.4 3D AD
-
Zero-Shot AD
- [WACV 2022
- [2022 - ADS)
- [2022
- [WACV 2022
- [PRL 2024
-
-
3.5 3D AD
-
Zero-Shot AD
- [NeurIPS 2023 - 3LAB/Real3D-AD)
-
-
3.6 Continual AD
-
3.6 Uniform/Multi-Class AD
-
Zero-Shot AD
-
-
3.6 Uniform AD
-
Star History
-
Zero-Shot AD
- ![Star History Chart - history.com/#M-3LAB/awesome-industrial-anomaly-detection&Date)
-
-
Table of Contents
- Star - Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection**](https://arxiv.org/abs/2410.09453) <br> | arxiv | 2024 | [Github](https://github.com/jam-cc/MMAD) | Benchmark |
- [paper with code
- [paper with code
- [paper with code
- [paper with code
- [paper with code
- Star - Class Embedding**](https://openaccess.thecvf.com/content/CVPR2022/html/Deng_Anomaly_Detection_via_Reverse_Distillation_From_One-Class_Embedding_CVPR_2022_paper.html) <br> | CVPR | 2022 | [Github](https://github.com/hq-deng/RD4AD) | Teacher-Student |
- Star - Reverse-Distillation) | Teacher-Student |
- Star - Class-Classification |
- Star - shot anomaly detection**](https://link.springer.com/chapter/10.1007/978-3-031-20053-3_18) <br> | ECCV | 2022 | [Github](https://github.com/MediaBrain-SJTU/RegAD) | Few Shot |
- Star - Language Models**](https://arxiv.org/abs/2308.15366) <br> | AAAI | 2024 | [Github](https://github.com/CASIA-IVA-Lab/AnomalyGPT) | Few Shot |
- Star - set Supervised Anomaly Detection**](https://openaccess.thecvf.com/content/CVPR2022/html/Ding_Catching_Both_Gray_and_Black_Swans_Open-Set_Supervised_Anomaly_Detection_CVPR_2022_paper.html) <br> | CVPR | 2022 | [Github](https://github.com/Choubo/DRA) | Few abnormal samples |
- Star - Push-Pull Contrastive Learning for Supervised Anomaly Detection**](https://openaccess.thecvf.com/content/CVPR2023/html/Yao_Explicit_Boundary_Guided_Semi-Push-Pull_Contrastive_Learning_for_Supervised_Anomaly_Detection_CVPR_2023_paper.html) <br> | CVPR | 2023 | [Github](https://github.com/xcyao00/BGAD) | Few abnormal samples |
- Star - class classification via interpolated gaussian descriptor**](https://ojs.aaai.org/index.php/AAAI/article/view/19915) <br> | AAAI | 2022 | [Github](https://github.com/tianyu0207/IGD) | Noisy AD |
- Star - time unsupervised anomaly detection with localization via conditional normalizing flows**](https://openaccess.thecvf.com/content/WACV2022/html/Gudovskiy_CFLOW-AD_Real-Time_Unsupervised_Anomaly_Detection_With_Localization_via_Conditional_Normalizing_WACV_2022_paper.html) <br> | WACV | 2022 | [Github](https://github.com/gudovskiy/cflow-ad) | Distribution Map |
- Star - Abstract-Conference.html) <br> | NeurIPS | 2022 | [Github](https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch) | Noisy AD |
- Star - Resolution Defect Contrastive Localization using Pyramid Normalizing Flow**](https://openaccess.thecvf.com/content/CVPR2023/html/Lei_PyramidFlow_High-Resolution_Defect_Contrastive_Localization_Using_Pyramid_Normalizing_Flow_CVPR_2023_paper.html) <br> | CVPR | 2023 | [Github](https://github.com/gasharper/PyramidFlow) | Distribution Map |
- Star - science/patchcore-inspection) | Memory-bank |
- Star - bank |
- Star - a discriminatively trained reconstruction embedding for surface anomaly detection**](https://openaccess.thecvf.com/content/ICCV2021/html/Zavrtanik_DRAEM_-_A_Discriminatively_Trained_Reconstruction_Embedding_for_Surface_Anomaly_ICCV_2021_paper.html) <br> | ICCV | 2021 | [Github](https://github.com/vitjanz/draem) | Reconstruction-based |
- Star - projection network for surface anomaly detection**](https://link.springer.com/chapter/10.1007/978-3-031-19821-2_31) <br> | ECCV | 2022 | [Github](https://github.com/VitjanZ/DSR_anomaly_detection) | Reconstruction-based |
- Star - frequency Channel-selection Representations for Unsupervised Anomaly Detection**](https://ieeexplore.ieee.org/abstract/document/10192551/) <br> | TIP | 2023 | [Github](https://github.com/zhangzjn/ocr-gan) | Reconstruction-based |
- Star - based |
- Star - Realization Channels: Unsupervised Anomaly Detection Beyond One-Class Classification**](https://openaccess.thecvf.com/content/ICCV2023/html/McIntosh_Inter-Realization_Channels_Unsupervised_Anomaly_Detection_Beyond_One-Class_Classification_ICCV_2023_paper.html) <br> | ICCV | 2023 | [Github](https://github.com/DeclanMcIntosh/InReaCh) | Noisy AD |
- Star - learned Prompt**](https://ojs.aaai.org/index.php/AAAI/article/view/28153) <br> | AAAI | 2024 | [Github](https://github.com/shirowalker/UCAD) | Continual AD |
- Star - class Anomaly Detection**](https://proceedings.neurips.cc/paper_files/paper/2022/hash/1d774c112926348c3e25ea47d87c835b-Abstract-Conference.html) <br> | NeurIPS | 2022 | [Github](https://github.com/zhiyuanyou/UniAD) | Multi-class unified |
- Star - class Unsupervised Anomaly Detection**](https://openreview.net/pdf?id=clJTNssgn6) <br> | NeurIPS | 2023 | [Github](https://github.com/RuiyingLu/HVQ-Trans) | Multi-class unified |
- Star
- Star - AD: A Dataset of Point Cloud Anomaly Detection**](https://openreview.net/pdf?id=zGthDp4yYe) <br> | NeurIPS | 2023 | [Github](https://github.com/M-3LAB/Real3D-AD) | Point Cloud |
- Star
- Star - IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing**](https://arxiv.org/abs/2301.13359) <br> | TCYB | 2024 | [Github](https://github.com/M-3LAB/open-iad) | Benchmark |
- Star - class Visual Anomaly Detection**](http://arxiv.org/pdf/2406.03262v1) <br> | arxiv | 2024 | [Github](https://github.com/zhangzjn/ader) | Benchmark |
- Star - Language Models for Unified Zero-shot Anomaly Localization**](https://arxiv.org/abs/2308.15939) <br> | arxiv | 2023 | [Github](https://github.com/hq-deng/AnoVL) | Zero Shot |
- Star
- Star - Agnostic Unified Framework for Visual Anomaly Detection**](https://arxiv.org/abs/2307.12540) <br> | arxiv | 2023 | [Github](https://github.com/YoojLee/Uniformaly) | Multi-class unified |
-
ICLR 2024
- [ICLR 2024 - U/MuSc)
- [ICLR 2024
-
ICCV 2023
-
WACV 2024
-
AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024 - IVA-Lab/AnomalyGPT)[[project page]](https://anomalygpt.github.io/)
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
-
ACM MM 2024
- [ACM MM 2024
- [ACM MM 2024 - 3LAB/Group3AD)
- [ACM MM 2024 - IVA-Lab/FiLo)
-
ACM MM 2023
-
NeurIPS 2024
- [NeurIPS 2024
- [NeurIPS 2024
- [NeurIPS 2024
- [NeurIPS 2024 - iqia.github.io/cableinspect-ad/)
- [NeurIPS 2024
-
ICML 2023
-
ICASSP 2024
Categories
2.1 Feature-Embedding-based Methods
174
2.2 Reconstruction-Based Methods
108
More Abnormal Samples
82
Other settings
58
Medical (related)
57
3.3 Anomaly Synthetic
57
3.7 Logical AD
35
Table of Contents
35
Others
28
3.1 Few-Shot AD
22
ECCV 2024
19
CVPR 2024
14
CVPR 2023
14
More Normal samples With (Less Abnormal Samples or Weak Labels)
11
3.7 Uniform/Multi-Class AD
11
AAAI 2024
11
LLM related
10
ICCV 2023
10
SAM segment anything
9
3.8 Logical AD
9
3.2 Noisy AD
9
3.4 RGBD AD
9
WACV 2024
8
NeurIPS 2023
7
ICASSP 2024
7
NeurIPS 2024
5
3.4 3D AD
5
3.6 Uniform AD
3
ACM MM 2024
3
ICLR 2024
2
ICML 2023
2
3.6 Continual AD
2
ICLR 2023
2
Star History
1
3.5 3D AD
1
ACM MM 2023
1
3.6 Uniform/Multi-Class AD
1
Sub Categories