awesome-industrial-anomaly-detection
Paper list and datasets for industrial image anomaly/defect detection (updating). 工业异常/瑕疵检测论文及数据集检索库(持续更新)。
https://github.com/M-3LAB/awesome-industrial-anomaly-detection
Last synced: 2 days ago
JSON representation
-
ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024 - CLIP)
- [ECCV 2024 - ad)
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024 - Research/Defect_Spectrum)
- [ECCV 2024 - mo.github.io/crad/)[[code]](https://github.com/tae-mo/CRAD)
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024
- [ECCV 2024 oral - Hallucination)
- [ECCV 2024
- [ECCV 2024
-
2.1 Feature-Embedding-based Methods
-
2.1.4 Memory Bank
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2020
- [2022
- [2022
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [2002 - ->
- [2020
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [2022
- [2022
- [2022
- [2022
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2021
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [2022
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
- [ICPR 2021 - Anomaly-Detection-Localization-master)
-
2.1.2 One-Class Classification (OCC)
-
2.1.1 Teacher-Student
- [2021
- [2021 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [Multimedia Tools and Applications 2024
- [CVPR 2021
- [2021
- [2021 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [CASE 2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2022
- [2022
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [CVPR 2020
- [TBD 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [JMS 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [CVPR 2021
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [CVPR 2022 - deng/RD4AD)
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
- [Multimedia Tools and Applications 2024
-
2.1.3 Distribution-Map
- [2021
- [2022
- [2021
- [2022
- [Applied Intelligence 2024
- [2022
- [2022
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [Sensors 2018
- [2021
- [2022
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2021 - Energy-Anomaly-Detection-of-Defect)
- [2021
- [TII 2023
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [ICME 2022
- [Applied Intelligence 2024
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [2022
- [2022 - and-PEFM-for-Image-Anomaly-Detection-and-Segmentation)
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [ICCVDM 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [WACV 2022 - rudolph/cs-flow)
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [2021
- [2021
- [WACV 2022 - ad)
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
- [Applied Intelligence 2024
-
-
Others
- [CVPR 2023 Workshop
- [CASE 2024 - dataset)
- [IJCV 2023 - results)
- [2023
- [2023
- [2023
- [2023
- [IJCV 2023 - results)
- [CVPR Workshop 2023
- [2023
- Dataset Distillation
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [TIM 2022
- [IJCV 2023 - results)
- [2024
- [2024
- [2024
- [2023 - deng/AnoVL)
- [2023
- [2023
- [2023
- [TIP2024
- [2023
- [2023 Section 9.2
- [2023
- [2023
- [2023
-
Medical (related)
- [IJCV 2023 - results)
- [code
- [2024
- [2022
- [2015
- [2020
- [2022
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [2024
- [2023
- [2023
- [2022
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [2024 - XAD)
- [IJCV 2023 - results)
- [2024
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [2024
- [IJCV 2023 - results)
- [CVPR 2024
- [2024
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [TCYB 2024 - 3LAB/open-iad)[[中文]](https://blog.csdn.net/m0_63828250/article/details/136891730)
- [IJCV 2023 - results)
- [TIM 2022
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
- [IJCV 2023 - results)
-
3.4 RGBD AD
-
Zero-Shot AD
- [WACV 2022
- [2023
- [Neurocomputing 2024
- [2024
- [2024
- [WACV 2022
- [2022 - ADS)
- [2022
- [2023 - cs008/PD-REAL)
-
-
2.2 Reconstruction-Based Methods
-
2.2.1 Autoencoder (AE)
- [2018
- [2021
- [2022
- [2020
- [2021
- [2022
- [2018
- [Sensors 2018
- [TIM 2018
- [2020
- [2021
- [Neurocomputing 2020
- [2021
- [2021
- [2022
- [ICCV 2021
- [2022
- [BMVC 2020
- [2020
- [2022
- [PR 2021
- [2022
- [CVPR 2022 oral
- [TPAMI 2022
- [2019
- [2020
- [2020
- [2023
- [2023
- [2021
- [2022
- [2020
- [2021
- [2022
- [2021
- [2022
- [2021
- [2022
- [2020
- [2022
- [2024
- [2020
- [TII 2024
- [TPAMI 2022
-
2.2.2 Generative Adversarial Networks (GANs)
- [PRICAI 2018
- [PRICAI 2018
- [TIP 2023 - gan)
- [AAAI 2021
- [2021
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
- [PRICAI 2018
-
2.2.4 Diffusion Model
-
2.2.3 Transformer
-
-
3.7 Uniform/Multi-Class AD
-
3.8 Logical AD
-
Zero-Shot AD
- [IJCV 2022
- [2023
- [2023
- [TCSVT 2023
- [IJCV 2022
- [2023
- [2024 - 125/segad)
- [2024 - Caption)
- [2024
-
-
Other settings
-
TTT binary segmentation
- CID
- DEEPPCB - | - | 1500 | Bounding box | RGB synthetic | 2019 |
- Eyecandies
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [Computers in Industry 2021
- [2013
- [ACCV 2022 - ai.github.io/eyecandies/)
- [CVPR 2019 - 020-01400-4.pdf) [[data]](https://www.mvtec.com/company/research/datasets/mvtec-ad)
- [VISAPP 2021 - 3d-ad)
- DAGM - | - | 11500 | Segmentation mask | RGB synthetic | 2007 |
- [2022 - 2022.github.io/)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [ECCV 2022 - science/spot-diff)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2024
- [2021 - pipe-weld-defect-detection)
- [TII 2016
- [2015
- [2019
- [2020 - tile-defect-datasets.)
- [2023
- [2023
- [2023 - Workshop/VISION-Datasets)
- [IJRS 2023
- [WACV 2024
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [data 2019
- [IJCV 2022 - loco)
- [2017
- [IJCV 2022 - loco)
- AITEX
- BTAD - | - | 2830 | Segmentation mask | RGB real | 2021 |
- DTD-Synthetic - | - | - | Segmentation mask | RGB synthetic | WACV,2024 |
- GDXray
- KolekrotSDD
- KolekrotSDD2
- MIAD
- MPDD
- MVTec AD
- MVTec 3D-AD
- MVTec LOCO-AD
- NanoTwice
- NEU surface defect
- [Journal of Intelligent Manufacturing
- [TIM 2024 - Defect-Detection)
- [2024
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2019
- [IJCV 2022 - loco)
- [2019 - defects)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
-
-
More Normal samples With (Less Abnormal Samples or Weak Labels)
-
2.2.5 Others
- [2021
- [ECCV 2020
- [ICLR 2020
- [2021 - network-image)
- [WACV 2023
- [2023
- [TSMC 2024
- [CVPR 2022
- [ECCV 2020
-
-
More Abnormal Samples
-
2.2.5 Others
- [IJCV 2017
- [IJAMT 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [2021
- [TIP 2021
- [ICRA 2021
- [Robotics and Computer-Integrated Manufacturing 2020
- [Applied Sciences 2019
- [2018
- [Applied Sciences 2018
- [IFAC-PapersOnLine 2018
- [IJCV 2017
- [TIM 2017
- Computing in civil engineering 2017
- [IJAMT 2017
- [Metallurgical & Mining Industry 2015
- [CIRP annals 2016
- [2023 - Attention-U-Net-with-Feature-Infusion-Pushing-the-Boundaries-of-Multiclass-Defect-Segmentation)
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [2021
- [ICRA 2021
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [TIP 2021
- [IJCV 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [2024
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
- [IJCV 2017
- [IJAMT 2017
-
-
3.1 Few-Shot AD
-
2.2.5 Others
- [ECCV 2022 oral - SJTU/RegAD)
- [ICCV 2021
- [ECCV 2022 oral - SJTU/RegAD)
- [2021
- [2023 - few-shot/)
- [(Distribution)WACV 2021
- [2023
- [2024
- [(Memory bank)CVPR 2022
- [ICCV 2021
- [CVPRW 2023
- [2024
- [2021
-
Zero-Shot AD
-
-
3.2 Noisy AD
-
Zero-Shot AD
-
-
3.3 Anomaly Synthetic
-
Zero-Shot AD
- [2020
- [2020
- [2020
- [2019
- [2020
- [2020
- [2020
- [2020
- [BMVC 2022
- [2021
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [(OCC)2022
- [AAAI 2023
- [2020
- [(Reconstruction AE)ICCV 2021
- [IEEE Access 2019
- [2020
- [2020
- [(OCC)ICCV 2021 - cutpaste)
- [2020
- [TII 2022
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2020
- [2024
- [2020
- [2024
- [2020
- [2020
- [2020
- [2020
- [ECCV 2022
- [ECCV 2022 - synthetic-anomalies)
- [2020
- [2020
- [ECCV 2022
- [2020
- [2020
- [2020
- [2020
-
-
3.7 Logical AD
-
Zero-Shot AD
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [PR 2016
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2017
- [IJCV 2022 - loco)
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [2017
- [ICUMT 2021 - my.sharepoint.com/personal/xjezek16_vutbr_cz/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fxjezek16%5Fvutbr%5Fcz%2FDocuments%2FMPDD&ga=1)
- [2020 - tile-defect-datasets.)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022 - loco)
- [IJCV 2022
- [IJCV 2022
-
-
CVPR 2023
-
SAM segment anything
- [AAAI 2024
- [2023 SAM tech report
- [2023 SAM tech report
- [2023 SAM tech report
- [2023
- [2023 - zero-shot-anomaly-detection)
- [2023
- [2024
- [2024 - CDConcepts-Eval)
- [AAAI 2024
-
NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023
- [NeurIPS 2023 - shot-ad-via-batch-norm)
- [NeurIPS 2023 - Trans)
- [NeurIPS 2023 - 3LAB/Real3D-AD)[[中文]](https://blog.csdn.net/m0_63828250/article/details/136667168)
-
ICLR 2023
-
CVPR 2024
- [CVPR 2024
- [CVPR 2024
- [CVPR 2024 - 125/segad)
- [CVPR 2024 - Chen/PE-MIL)
- [CVPR 2024 - UoE/Looking3D)
- [CVPR 24 Visual Anomaly Detection Workshop
- [CVPR 2024 - lab/AHL)
- [CVPR 2024 - 0/PromptAD)
- [CVPR 2024
- [Challenge and Call for Papers
- [CVPR 2024 - lab/InCTRL)
- [CVPR 2024 - IAD)[[data]](https://realiad4ad.github.io/Real-IAD/)
- [CVPR 2024
- [CVPR 2024 - 233/Anomaly-ShapeNet)
-
3.4 3D AD
-
Zero-Shot AD
- [WACV 2022
- [2022 - ADS)
- [2022
- [WACV 2022
- [PRL 2024
-
-
3.5 3D AD
-
Zero-Shot AD
- [NeurIPS 2023 - 3LAB/Real3D-AD)
-
-
3.6 Continual AD
-
3.6 Uniform/Multi-Class AD
-
Zero-Shot AD
-
-
3.6 Uniform AD
-
Star History
-
Zero-Shot AD
- ![Star History Chart - history.com/#M-3LAB/awesome-industrial-anomaly-detection&Date)
-
-
NeurIPS 2025
- [NeurIPS 2025 - 938/README1.md)
-
MLLM related
- [CVPR 2025 - OV/)
- [2025
- [2025
- [2025
- [2024
- [2024
- [ICCAD 2024
- [2024
- [2025
- [AAAI 2024 - IVA-Lab/AnomalyGPT)[[project page]](https://anomalygpt.github.io/)
- [2024
- [2024
- [2025
- [ICLR 2025 - cc/MMAD) [[Data]](https://huggingface.co/datasets/jiang-cc/MMAD)
- [2025
- [2025
- [2023
- [2023 - for-Generic-Anomaly-Detection)
- [2023 - 4V-AD)
- [2025
- [2025
- [2025 - Lee/IAD-R1)
-
CVPR 2025
- [CVPR 2025 - UoE/OddOneOutAD)
- [CVPR 2025
- [CVPR 2025
- [CVPR 2025 - CLIP)
- [CVPR 2025 SyntaGen Workshop
- [CVPR 2025 - SLOW/AnomalyNCD)
- [CVPR 2025
- [CVPR 2025
- [CVPR 2025
- [CVPR 2025
- [CVPR 2025
- [CVPR 2025
- [CVPR 2025 - AD)
- [CVPR 2025 - PFL)
- [CVPR 2025
- [CVPR 2025 - IMOS/AnomalyAny)
- [CVPR 2025
- [CVPR 2025 - 0/One-for-More)
- [CVPR 2025 - Former)
- [CVPR 2025 - vad.github.io/#)
- [CVPR 2025W
- [CVPR 2025 - 233/Physics-AD)
- [CVPR 2025 - bz/DeCo-Diff)
- [CVPR 2025 VAND 3.0 Workshop
- [CVPR 2025
- [CVPR 2025
- [CVPR 2025 - bz/DeCo-Diff)
- [CVPR 2025
- [CVPR 2025 - lab/PatchGuard)
- [CVPR 2025
- [CVPR 2025 VAND 3.0 Workshop - U/RoBiS)
-
ICCV 2025
- [ICCV 2025
- [ICCV 2025
- [ICCV 2025
- [ICCV 2025
- [ICCV 2025 - SLOW/SeaS)
-
Table of Contents
- Star - Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection**](https://arxiv.org/abs/2410.09453) <br> | arxiv | 2024 | [Github](https://github.com/jam-cc/MMAD) | Benchmark |
- [paper with code
- [paper with code
- [paper with code
- [paper with code
- [paper with code
- Star - Class Embedding**](https://openaccess.thecvf.com/content/CVPR2022/html/Deng_Anomaly_Detection_via_Reverse_Distillation_From_One-Class_Embedding_CVPR_2022_paper.html) <br> | CVPR | 2022 | [Github](https://github.com/hq-deng/RD4AD) | Teacher-Student |
- Star - Reverse-Distillation) | Teacher-Student |
- Star - Class-Classification |
- Star - shot anomaly detection**](https://link.springer.com/chapter/10.1007/978-3-031-20053-3_18) <br> | ECCV | 2022 | [Github](https://github.com/MediaBrain-SJTU/RegAD) | Few Shot |
- Star - Language Models**](https://arxiv.org/abs/2308.15366) <br> | AAAI | 2024 | [Github](https://github.com/CASIA-IVA-Lab/AnomalyGPT) | Few Shot |
- Star - set Supervised Anomaly Detection**](https://openaccess.thecvf.com/content/CVPR2022/html/Ding_Catching_Both_Gray_and_Black_Swans_Open-Set_Supervised_Anomaly_Detection_CVPR_2022_paper.html) <br> | CVPR | 2022 | [Github](https://github.com/Choubo/DRA) | Few abnormal samples |
- Star - Push-Pull Contrastive Learning for Supervised Anomaly Detection**](https://openaccess.thecvf.com/content/CVPR2023/html/Yao_Explicit_Boundary_Guided_Semi-Push-Pull_Contrastive_Learning_for_Supervised_Anomaly_Detection_CVPR_2023_paper.html) <br> | CVPR | 2023 | [Github](https://github.com/xcyao00/BGAD) | Few abnormal samples |
- Star - class classification via interpolated gaussian descriptor**](https://ojs.aaai.org/index.php/AAAI/article/view/19915) <br> | AAAI | 2022 | [Github](https://github.com/tianyu0207/IGD) | Noisy AD |
- Star - time unsupervised anomaly detection with localization via conditional normalizing flows**](https://openaccess.thecvf.com/content/WACV2022/html/Gudovskiy_CFLOW-AD_Real-Time_Unsupervised_Anomaly_Detection_With_Localization_via_Conditional_Normalizing_WACV_2022_paper.html) <br> | WACV | 2022 | [Github](https://github.com/gudovskiy/cflow-ad) | Distribution Map |
- Star - Abstract-Conference.html) <br> | NeurIPS | 2022 | [Github](https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch) | Noisy AD |
- Star - Resolution Defect Contrastive Localization using Pyramid Normalizing Flow**](https://openaccess.thecvf.com/content/CVPR2023/html/Lei_PyramidFlow_High-Resolution_Defect_Contrastive_Localization_Using_Pyramid_Normalizing_Flow_CVPR_2023_paper.html) <br> | CVPR | 2023 | [Github](https://github.com/gasharper/PyramidFlow) | Distribution Map |
- Star - science/patchcore-inspection) | Memory-bank |
- Star - bank |
- Star - a discriminatively trained reconstruction embedding for surface anomaly detection**](https://openaccess.thecvf.com/content/ICCV2021/html/Zavrtanik_DRAEM_-_A_Discriminatively_Trained_Reconstruction_Embedding_for_Surface_Anomaly_ICCV_2021_paper.html) <br> | ICCV | 2021 | [Github](https://github.com/vitjanz/draem) | Reconstruction-based |
- Star - projection network for surface anomaly detection**](https://link.springer.com/chapter/10.1007/978-3-031-19821-2_31) <br> | ECCV | 2022 | [Github](https://github.com/VitjanZ/DSR_anomaly_detection) | Reconstruction-based |
- Star - frequency Channel-selection Representations for Unsupervised Anomaly Detection**](https://ieeexplore.ieee.org/abstract/document/10192551/) <br> | TIP | 2023 | [Github](https://github.com/zhangzjn/ocr-gan) | Reconstruction-based |
- Star - based |
- Star - Realization Channels: Unsupervised Anomaly Detection Beyond One-Class Classification**](https://openaccess.thecvf.com/content/ICCV2023/html/McIntosh_Inter-Realization_Channels_Unsupervised_Anomaly_Detection_Beyond_One-Class_Classification_ICCV_2023_paper.html) <br> | ICCV | 2023 | [Github](https://github.com/DeclanMcIntosh/InReaCh) | Noisy AD |
- Star - learned Prompt**](https://ojs.aaai.org/index.php/AAAI/article/view/28153) <br> | AAAI | 2024 | [Github](https://github.com/shirowalker/UCAD) | Continual AD |
- Star - class Anomaly Detection**](https://proceedings.neurips.cc/paper_files/paper/2022/hash/1d774c112926348c3e25ea47d87c835b-Abstract-Conference.html) <br> | NeurIPS | 2022 | [Github](https://github.com/zhiyuanyou/UniAD) | Multi-class unified |
- Star - class Unsupervised Anomaly Detection**](https://openreview.net/pdf?id=clJTNssgn6) <br> | NeurIPS | 2023 | [Github](https://github.com/RuiyingLu/HVQ-Trans) | Multi-class unified |
- Star
- Star - AD: A Dataset of Point Cloud Anomaly Detection**](https://openreview.net/pdf?id=zGthDp4yYe) <br> | NeurIPS | 2023 | [Github](https://github.com/M-3LAB/Real3D-AD) | Point Cloud |
- Star
- Star - IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing**](https://arxiv.org/abs/2301.13359) <br> | TCYB | 2024 | [Github](https://github.com/M-3LAB/open-iad) | Benchmark |
- Star - class Visual Anomaly Detection**](http://arxiv.org/pdf/2406.03262v1) <br> | arxiv | 2024 | [Github](https://github.com/zhangzjn/ader) | Benchmark |
- Star - Language Models for Unified Zero-shot Anomaly Localization**](https://arxiv.org/abs/2308.15939) <br> | arxiv | 2023 | [Github](https://github.com/hq-deng/AnoVL) | Zero Shot |
- Star
- Star - Agnostic Unified Framework for Visual Anomaly Detection**](https://arxiv.org/abs/2307.12540) <br> | arxiv | 2023 | [Github](https://github.com/YoojLee/Uniformaly) | Multi-class unified |
- Star - Class Unsupervised Anomaly Detection**](https://openaccess.thecvf.com/content/CVPR2025/html/Guo_Dinomaly_The_Less_Is_More_Philosophy_in_Multi-Class_Unsupervised_Anomaly_CVPR_2025_paper.html) <br> | CVPR | 2025 | [Github](https://github.com/guojiajeremy/Dinomaly) | Multi-Class Unified |
- Star - - Semantics-Aware Logical Anomaly Detection**](https://arxiv.org/abs/2509.02101) <br> | ICCV | 2025 | [Github](https://github.com/MaticFuc/SALAD) | Logical |
-
ICLR 2024
- [ICLR 2024 - U/MuSc)
- [ICLR 2024
-
ICCV 2023
-
WACV 2024
-
AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024 - IVA-Lab/AnomalyGPT)[[project page]](https://anomalygpt.github.io/)
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
- [AAAI 2024
-
ACM MM 2024
- [ACM MM 2024
- [ACM MM 2024 - 3LAB/Group3AD)
- [ACM MM 2024 - IVA-Lab/FiLo)
- [ACM MM 2024
-
ACM MM 2023
-
AAAI 2025
- [AAAI 2025
- [AAAI 2025
- [AAAI 2025 - hub/KAG-prompt)
- [AAAI 2025
- [AAAI 2025
- [AAAI 2025
- [AAAI 2025
- [AAAI 2025 - 3LAB/Look-Inside-for-More)
- [AAAI 2025
- [AAAI 2025 - MIG/SAM-SPT)
-
NeurIPS 2024
- [NeurIPS 2024
- [NeurIPS 2024
- [NeurIPS 2024
- [NeurIPS 2024 - iqia.github.io/cableinspect-ad/)
- [NeurIPS 2024
- [NeurIPS 2024
- [NeurIPS 2024 - ->
- [NeurIPS 2024
-
ICML 2023
-
ICASSP 2024
-
LLM related
-
IJCAI 2025
-
ICLR 2025
-
ICML 2025
Categories
2.1 Feature-Embedding-based Methods
169
2.2 Reconstruction-Based Methods
101
More Abnormal Samples
80
Other settings
58
Medical (related)
57
3.3 Anomaly Synthetic
57
Table of Contents
37
3.7 Logical AD
35
CVPR 2025
31
Others
28
MLLM related
22
ECCV 2024
21
3.1 Few-Shot AD
20
CVPR 2023
14
CVPR 2024
14
AAAI 2024
11
AAAI 2025
10
ICCV 2023
10
SAM segment anything
10
3.7 Uniform/Multi-Class AD
9
More Normal samples With (Less Abnormal Samples or Weak Labels)
9
3.4 RGBD AD
9
3.2 Noisy AD
9
3.8 Logical AD
9
NeurIPS 2024
8
WACV 2024
8
ICASSP 2024
7
NeurIPS 2023
7
3.4 3D AD
5
ICCV 2025
5
ACM MM 2024
4
3.6 Uniform AD
3
ICLR 2025
3
3.6 Continual AD
2
ICML 2023
2
ICLR 2023
2
ICLR 2024
2
ICML 2025
2
IJCAI 2025
2
Star History
1
3.5 3D AD
1
LLM related
1
3.6 Uniform/Multi-Class AD
1
NeurIPS 2025
1
ACM MM 2023
1
Sub Categories