Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Aerodynamics-Club/awesome-resources
This repository is a collection of useful (read awesome) resources related to aerodynamics, aerial robots, simulators and geeky stuff.
https://github.com/Aerodynamics-Club/awesome-resources
List: awesome-resources
Last synced: 16 days ago
JSON representation
This repository is a collection of useful (read awesome) resources related to aerodynamics, aerial robots, simulators and geeky stuff.
- Host: GitHub
- URL: https://github.com/Aerodynamics-Club/awesome-resources
- Owner: Aerodynamics-Club
- Created: 2020-08-04T15:11:32.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-10-16T17:33:12.000Z (about 4 years ago)
- Last Synced: 2024-12-02T22:02:02.872Z (19 days ago)
- Size: 34.2 KB
- Stars: 7
- Watchers: 4
- Forks: 16
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-resources - This repository is a collection of useful (read awesome) resources related to aerodynamics, aerial robots, simulators and geeky stuff. (Other Lists / Monkey C Lists)
README
# awesome-resources
![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)
This repository contains a curated list of useful (read awesome) resources related to aerodynamics, aerial robots and simulators.## Contributing
Fork this repository and make changes to the forked repository. Make the changes to your personal copy. Once the changes are ready to be included in this repository, submit a PR to this repository. Instructions for the process are available [here](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request). Keep periodically checking your active pull requests for reviews and suggestions by reviewers [here](https://github.com/Aerodynamics-Club/awesome-resources/pulls).## Table of Contents
- [Papers](#papers)
- [Tutorials](#tutorials)
- [Blogs](#blogs)
- [Courses](#courses)
- [Videos](#videos)
- [Repositories](#repositories)## Papers
#### Localisation
#### Visual Inertial Odometry
* Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback (ROVIO) [[Paper]](https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/263423/1/ROVIO.pdf)[[Code]](https://github.com/ethz-asl/rovio)
* Keyframe-Based Visual-Inertial Odometry using Nonlinear Optimization (OKVIS) [[Paper]](https://journals.sagepub.com/doi/abs/10.1177/0278364914554813?journalCode=ijra)[[Code]](https://github.com/ethz-asl/okvis)
* VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator [[Paper]](https://ieeexplore.ieee.org/document/8421746)[[Code]](https://github.com/HKUST-Aerial-Robotics/VINS-Mono)
#### Motion Planning
* Minimum Snap Trajectory Generation [[Paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5980409) [[Code]](https://github.com/ethz-asl/mav_trajectory_generation)
* BIT*-based path planning for micro aerial vehicles [[Paper]](https://ieeexplore.ieee.org/document/7792953)[[BIT*-Paper]](https://arxiv.org/abs/1405.5848)
## Tutorials
## Blogs
## Courses
* Robotics Specialisation
- [Coursera] [Robotics: Aerial Robotics](https://www.coursera.org/learn/robotics-flight)
- [Coursera] [Robotics: Computational Motion Planning](https://www.coursera.org/learn/robotics-motion-planning)
- [Coursera] [Robotics: Mobility](https://www.coursera.org/learn/robotics-mobility?specialization=robotics)
- [Coursera] [Robotics: Perception](https://www.coursera.org/learn/robotics-perception?specialization=robotics)
- [Coursera] [Robotics: Estimation and Learning](https://www.coursera.org/learn/robotics-learning)
## Videos
#### Talks
* [The astounding athletic power of quadcopters](https://youtu.be/w2itwFJCgFQ)
* [Artificial Intelligence Podcast by Lex Fridman](https://www.youtube.com/playlist?list=PLrAXtmErZgOdP_8GztsuKi9nrraNbKKp4)
* [Robotics Today](https://roboticstoday.github.io/index.html)
* [MIT RoboSeminars](https://www.youtube.com/channel/UCK2tKzmSFFnpFhUXtRKjvnQ)
* [Stanford - Robotics and Autonomous Systems Seminar](https://www.youtube.com/playlist?list=PLoROMvodv4rMeercb-kvGLUrOq4HR6BZD)
* [CMU RI Robotics Seminars](https://www.youtube.com/playlist?list=PLCFD85BC79FE703DF)
## Repositories### Repositories from BITS Pilani
* GenNav ERC-BPGC [[Link]](https://github.com/ERC-BPGC/gennav)
* Omnibase ERC-BPGC [[Link]](https://github.com/ERC-BPGC/omnibase)
* GenRL SforAIDL [[Link]](https://github.com/SforAiDl/genrl)---
### External Repositories
* Autonomous landing UAV [[Link]](https://github.com/MikeS96/autonomous_landing_uav)
* RotorS Simulator ETHZ-ASL [[Link]](https://github.com/ethz-asl/rotors_simulator)
* Graph Based Exploration Planner (GBPlanner) UNR-ARL [[Link]](https://github.com/unr-arl/gbplanner_ros)
* Motion Primitives Based Exploration Planner (MBPlanner) UNR-ARL [[Link]](https://github.com/unr-arl/mbplanner_ros)
* Implementaions of Various Algorithms in Python [[Link]](https://github.com/TheAlgorithms/Python)
* FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments [[Link]](https://github.com/mit-acl/faster)
* General ROS Navigation (GeRoNa) [[Link]](https://github.com/cogsys-tuebingen/gerona)
* All about Robotics [[Link]](https://github.com/mathiasmantelli/all_about_robotics)
* MAV Trajectory Generation (ETHZ ASL) [[Link]](https://github.com/ethz-asl/mav_trajectory_generation)### Datasets, Resources and Environments
* Clearpath Robotics Gazebo [[Link]](https://github.com/clearpathrobotics/cpr_gazebo)
* TU Delft Gazebo Models [[Link]](https://github.com/tudelft/gazebo_models)
* Dataset of Gazebo Worlds, Models and Maps [[Link]](https://github.com/mlherd/Dataset-of-Gazebo-Worlds-Models-and-Maps)