https://github.com/Angzz/awesome-panoptic-segmentation
Panoptic Segmentation Resources List
https://github.com/Angzz/awesome-panoptic-segmentation
List: awesome-panoptic-segmentation
computer-vision deep-learning panoptic-segmentation
Last synced: 26 days ago
JSON representation
Panoptic Segmentation Resources List
- Host: GitHub
- URL: https://github.com/Angzz/awesome-panoptic-segmentation
- Owner: Angzz
- Created: 2019-01-04T06:23:24.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2020-08-25T10:04:54.000Z (over 4 years ago)
- Last Synced: 2024-05-23T04:02:01.869Z (11 months ago)
- Topics: computer-vision, deep-learning, panoptic-segmentation
- Homepage:
- Size: 1.43 MB
- Stars: 544
- Watchers: 39
- Forks: 99
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesomeai - Panoptic Segmentation
- awesome-ai-awesomeness - Panoptic Segmentation
- awesome-computer-vision-papers - awesome-panoptic-segmentation
- awesome-ai-awesomeness - Panoptic Segmentation
- awesome-ai-list-guide - awesome-panoptic-segmentation
- ultimate-awesome - awesome-panoptic-segmentation - Panoptic Segmentation Resources List. (Other Lists / Julia Lists)
README
# Awesome-Panoptic-Segmentation [](https://awesome.re)
This repo is a collection of the challenging panoptic segmentation, including papers, codes, and benchmark results, etc.## Outline
* [Panoptic Segmentation](#panoptic-segmentation)
* [Datasets](#datasets)
* [Evaluation](#evaluation)
* [Benchmark Results](#benchmark-results)
* [Papers](#papers)
* [Tutorials](#tutorials)
* [Blogs](#blogs)## Panoptic Segmentation
Summarize in one sentence : Panoptic Segmentation proposes to solve the semantic segmentation(*Stuff*) and instance segmentation(*Thing*) in a unified and general manner.### Structure Overview
from [UPSNet](https://arxiv.org/pdf/1901.03784.pdf).
## Datasets
Generally, the datasets which contains both semantic and instance annotations can be used to solve the challenging *panoptic* task.* [COCO-Panoptic](http://cocodataset.org/)
* [Cityscapes](https://www.cityscapes-dataset.com/)
* [Mapillary Vistas](https://blog.mapillary.com/product/2017/05/03/mapillary-vistas-dataset.html)
* [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K/)
* [IDD20K](http://idd.insaan.iiit.ac.in/)## Evaluation
### Metrics
* ``PQ`` are the standard metrics described in [Panoptic Segmentation](https://arxiv.org/pdf/1801.00868.pdf).* ``PC`` are the standard metrics described in [DeeperLab](https://arxiv.org/pdf/1902.05093).
### Evaluation Code
* [cocodataset/panopticapi](https://github.com/cocodataset/panopticapi)
* [mcordts/cityscapesScripts](https://github.com/mcordts/cityscapesScripts)### Competition
* [AutoNUE 2019 Panoptic Segmentation Challenge (ICCV 2019 Workshop, Closed)](https://cvit.iiit.ac.in/autonue2019/challenge/)
* [COCO 2019 Panoptic Segmentation Task (ICCV 2019 Workshop, Closed)](http://cocodataset.org/#panoptic-2019)
* [Mapillary 2019 Panoptic Segmentation Task (ICCV 2019 Workshop, Closed)](https://research.mapillary.com/eccv18/#panoptic)
* [Cityscapes Panoptic Semantic Labeling Task (Open)](https://www.cityscapes-dataset.com/benchmarks/#panoptic-scene-labeling-task)
* [COCO 2018 Panoptic Segmentation Task (ECCV 2018 Workshop, Closed)](http://cocodataset.org/index.htm#panoptic-2018)
* [Mapillary Vistas 2018 Panoptic Segmentation Task (ECCV 2018 Workshop, Closed)](https://research.mapillary.com/eccv18/#panoptic)## Benchmark Results
### COCO `val` Benchmark
| Method | Backbone | PQ | PQ-Thing | PQ-Stuff | SQ | RQ | mIoU | AP-Mask | PC | e2e |
| :----------: | :-----------: | :-----------: | :-----------: |:-----------: |:-----------: |:-----------: |:-----------: |:-----------: | :-----------: | :-----------: |
| SOGNet | ResNet-50 | 43.7 | 50.6 | 33.2 | 78.7 | 53.5 | 54.56 | 34.2 | - | :white_check_mark: |
| UPSNet | ResNet-50 | 42.5 | 48.6 | 33.4 | - | - | 54.3 | 34.3 | - | :white_check_mark: |
| OANet | ResNet-101 | 41.3 | 50.4 | 27.7 | - | - | - | - | - | :white_check_mark: |
| OCFusion | ResNet-50 | 41.0 | 49.0 | 29.0 | 77.1 | 50.6 | - | - | - | :white_check_mark: |
| Panoptic FPN | ResNet-101 | 40.9 | 48.3 | 29.7 | - | - | - | - | - | :white_check_mark: |
| AUNet | ResNet-50 | 39.6 | 49.1 | 25.2 | - | - | 45.1 | 34.7 | - | :white_check_mark: |
| AdaptIS | ResNet-101 | 37.0 | 41.8 | 29.9 | - | - | - | - | - | :white_check_mark: |
| DeeperLab | Xception-71 | 34.3 | 37.5 | 29.6 | 77.1 | 43.1 | - | - | 56.8 | :white_check_mark: |### Cityscapes `val`Benchmark
| Method | Backbone | PQ | PQ-Thing | PQ-Stuff | SQ | RQ | mIoU | AP-Mask | PC | e2e |
| :----------: | :-----------: | :-----------: | :-----------: |:-----------: |:-----------: |:-----------: |:-----------: |:-----------: | :-----------: | :-----------: |
| Panoptic(Merge) | - | 61.2 | 66.4 | 54.0 | 80.9 | 74.4 | - | - | - | :negative_squared_cross_mark: |
| AdaptIS | ResNet-101 | 60.6 | 58.7 | 64.4 | - | - | 79.2 | 36.3 | - | :white_check_mark: |
| SOGNet | ResNet-50 | 60.0 | 56.7 | 62.5 | - | - | - | - | - | :white_check_mark: |
| Seamless | ResNet-50 | 59.8 | 53.4 | 64.5 | - | - | 75.4 | 31.9 | - | :white_check_mark: |
| UPSNet | ResNet-50 | 59.3 | 54.6 | 62.7 | 79.7 | 73.0 | 75.2 | 33.3 | - | :white_check_mark: |
| TASCNet | ResNet-101 | 59.2 | 56 | 61.5 | - | - | 77.8 | 37.6 | - | :white_check_mark: |
| AUNet | ResNet-101 | 59.0 | 54.8 | 62.1 | - | - | 75.6 | 34.4 | - | :white_check_mark: |
| Panoptic FPN | ResNet-101 | 58.1 | 52.0 | 62.5 | - | - | 75.7 |33.0 | - | :white_check_mark: |
| DeeperLab | Xception-71 | 56.5 | - | - | - | - | - | - | 75.6 | :white_check_mark: |### Mapillary `val` Benchmark
| Method | Backbone | PQ | PQ-Thing | PQ-Stuff | SQ | RQ | mIoU | AP-Mask | PC | e2e |
| :----------: | :-----------: | :-----------: | :-----------: |:-----------: |:-----------: |:-----------: |:-----------: |:-----------: | :-----------: | :-----------: |
| Panoptic(Merge) | - | 38.3 | 41.8 | 35.7 | 73.6 | 47.7 | - | - | - | :negative_squared_cross_mark: |
| Seamless | ResNet-50 | 37.2 | 33.2 | 42.5 | - | - | 50.2 | 16.3 | - | :white_check_mark: |
| AdaptIS | ResNet-101 | 33.4 | 28.3 | 40.3 | - | - | - | - | - | :white_check_mark: |
| TASCNet | ResNet-101 | 32.6 | 31.3 | 34.4 | - | - | 35.0 | 18.5 | - | :white_check_mark: |
| DeeperLab | Xception-71 | 32.0 | - | - | - | - | - | - | 55.3 | :white_check_mark: |## Papers
### AAAI2020
* **SOGNet:** Yibo Yang, Hongyang Li, Xia Li, Qijie Zhao, Jianlong Wu, Zhouchen Lin.
"SOGNet: Scene Overlap Graph Network for Panoptic Segmentation." AAAI (2020). [[paper](https://arxiv.org/pdf/1911.07527.pdf)]### ICCV2019
* **AdaptIS:** Konstantin Sofiiuk, Olga Barinova, Anton Konushin.
"AdaptIS: Adaptive Instance Selection Network." ICCV (2019). [[paper](https://arxiv.org/pdf/1909.07829.pdf)]* Cheng-Yang Fu, Tamara L. Berg, Alexander C. Berg.
"IMP: Instance Mask Projection for High Accuracy Semantic Segmentation of Things." ICCV (2019). [[paper](https://arxiv.org/pdf/1906.06597.pdf)]* Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam, Liang-Chieh Chen.
"Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation Bowen." ICCVW (2019). [[paper](https://arxiv.org/pdf/1911.10194.pdf)]### CVPR2019
* **Panoptic Segmentation:** Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár.
"Panoptic Segmentation." CVPR (2019). [[paper](https://arxiv.org/pdf/1801.00868.pdf)]* **Panoptic FPN:** Alexander Kirillov, Ross Girshick, Kaiming He, Piotr Dollár.
"Panoptic Feature Pyramid Networks." CVPR (2019 **oral**). [[paper](https://arxiv.org/pdf/1901.02446.pdf)] [[unofficial code](https://github.com/Angzz/panoptic-fpn-gluon)][[detectron2]](https://github.com/facebookresearch/detectron2)* **AUNet:** Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan Huang, Dalong Du, Xingang Wang.
"Attention-guided Unified Network for Panoptic Segmentation." CVPR (2019). [[paper](https://arxiv.org/pdf/1812.03904.pdf)]* **UPSNet:** Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, Raquel Urtasun.
"UPSNet: A Unified Panoptic Segmentation Network." CVPR (2019 **oral**). [[paper](https://arxiv.org/pdf/1901.03784.pdf)] [[code](https://github.com/uber-research/UPSNet)]* **DeeperLab:** Tien-Ju Yang, Maxwell D. Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Papandreou, Liang-Chieh Chen.
"DeeperLab: Single-Shot Image Parser." CVPR (2019 **oral**). [[paper](https://arxiv.org/pdf/1902.05093)] [[project](http://deeperlab.mit.edu)] [[code](https://github.com/tensorflow/models/tree/master/research/deeplab/evaluation)]* **OANet:** Huanyu Liu, Chao Peng, Changqian Yu, Jingbo Wang, Xu Liu, Gang Yu, Wei Jiang.
"An End-to-End Network for Panoptic Segmentation." CVPR (2019). [[paper](https://arxiv.org/pdf/1903.05027.pdf)]* Eirikur Agustsson, Jasper R. R. Uijlings, Vittorio Ferrari
.
"Interactive Full Image Segmentation by Considering All Regions Jointly." CVPR (2019). [[paper](https://arxiv.org/pdf/1812.01888.pdf)]* **Seamless:** Lorenzo Porzi, Samuel Rota Bulo, Aleksander Colovic, Peter Kontschieder.
"Seamless Scene Segmentation." CVPR (2019) (Extended Version). [[paper](https://arxiv.org/pdf/1905.01220.pdf)][[code](https://github.com/mapillary/seamseg)]### ECCV2018
* Qizhu Li, Anurag Arnab, Philip H.S. Torr.
"Weakly- and Semi-Supervised Panoptic Segmentation." ECCV (2018). [[paper](https://arxiv.org/pdf/1812.01192.pdf)] [[code](https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation)]### ArXiv
* Rohit Mohan, Abhinav Valada.
"EfficientPS: Efficient Panoptic Segmentation." arXiv (2020). [[paper]](https://arxiv.org/abs/2004.02307)* Rui Hou, Jie Li, Arjun Bhargava, Allan Raventos, Vitor Guizilini, Chao Fang, Jerome Lynch, Adrien Gaidon.
"Real-Time Panoptic Segmentation from Dense Detections." arXiv (2019). [[paper]](https://arxiv.org/pdf/1912.01202.pdf)* Mark Weber, Jonathon Luiten, Bastian Leibe.
"Single-Shot Panoptic Segmentation." arXiv (2019). [[paper](https://arxiv.org/pdf/1911.00764.pdf)]* Qiang Chen, Anda Cheng, Xiangyu He, Peisong Wang, Jian Cheng.
"SpatialFlow: Bridging All Tasks for Panoptic Segmentation." arXiv (2019). [[paper](https://arxiv.org/pdf/1910.08787.pdf)]* Sagi Eppel, Alan Aspuru-Guzik.
"Generator evaluator-selector net: a modular approach for panoptic segmentation." arXiv (2019). [[paper](https://arxiv.org/pdf/1908.09108.pdf)]* Jasper R. R. Uijlings, Mykhaylo Andriluka, Vittorio Ferrari.
"Panoptic Image Annotation with a Collaborative Assistant." arXiv (2019). [[paper](https://arxiv.org/pdf/1906.06798.pdf)]* **OCFusion:** Justin Lazarow, Kwonjoon Lee, Zhuowen Tu.
"Learning Instance Occlusion for Panoptic Segmentation." arXiv (2019). [[paper](https://arxiv.org/pdf/1906.05896.pdf)]* **PEN:** Yuan Hu, Yingtian Zou, Jiashi Feng.
"Panoptic Edge Detection." arXiv (2019). [[paper](https://arxiv.org/pdf/1906.00590.pdf)]* **TASCNet:** Jie Li, Allan Raventos, Arjun Bhargava, Takaaki Tagawa, Adrien Gaidon.
"Learning to Fuse Things and Stuff." arXiv (2018). [[paper](https://arxiv.org/pdf/1812.01192.pdf)]* Daan de Geus, Panagiotis Meletis, Gijs Dubbelman.
"Panoptic Segmentation with a Joint Semantic and Instance Segmentation Network." arXiv (2018). [[paper](https://arxiv.org/pdf/1809.02110.pdf)]* Daan de Geus, Panagiotis Meletis, Gijs Dubbelman.
"Single Network Panoptic Segmentation for Street Scene Understanding." arXiv (2019). [[paper](https://arxiv.org/pdf/1902.02678.pdf)]* David Owen, Ping-Lin Chang.
"Detecting Reflections by Combining Semantic and Instance Segmentation." arXiv (2019). [[paper](https://arxiv.org/pdf/1904.13273.pdf)]* Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji.
"PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things." arXiv (2019, IROS). [[paper](https://arxiv.org/pdf/1903.01177.pdf)]## Tutorials
* CVPR 2019 Tutorial on Visual Recognition and Beyond. [[slides](https://www.dropbox.com/s/t6tg87t78pdq6v3/cvpr19_tutorial_alexander_kirillov.pdf?dl=0)] [[homepage](http://feichtenhofer.github.io/cvpr2019-recognition-tutorial/?nsukey=sJf%2BXalFUZ1SdTHfNF9ApK0yHb3RiOUTjCdoDI0FTj2gtGZgjyITEf3MIwlgv1CWJywF4qeEOFiUd14dVkeQjn61Yh4mOoqDVb%2Ff4BDiWtBZCNZzozDG5ryVLAM4y8kHxz2NXKdlyjgF2BwgPUMBLs4RrvMNRpgQl8PZ9KPBmhwEXq71r6E4dCCvEFCdio1Lj3aQc%2FoyG%2FdLIN3tBmSjPQ%3D%3D)]
* COCO 2017 Workshop. [[slides](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)]## Blogs
* Megvii(Face++) Detection Team. [[zhihu]](https://zhuanlan.zhihu.com/p/59141570)