Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/BiaPri/awesome-energy-tools
Central hub offering an extensive collection of datasets and tools for energy-related applications.
https://github.com/BiaPri/awesome-energy-tools
List: awesome-energy-tools
energy energy-data energy-modelling
Last synced: 16 days ago
JSON representation
Central hub offering an extensive collection of datasets and tools for energy-related applications.
- Host: GitHub
- URL: https://github.com/BiaPri/awesome-energy-tools
- Owner: BiaPri
- Created: 2023-12-30T09:11:51.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2023-12-30T15:51:58.000Z (12 months ago)
- Last Synced: 2024-05-22T20:07:31.175Z (7 months ago)
- Topics: energy, energy-data, energy-modelling
- Homepage:
- Size: 23.4 KB
- Stars: 10
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-energy-tools - Central hub offering an extensive collection of datasets and tools for energy-related applications. (Other Lists / Monkey C Lists)
README
# β‘ awesome-energy-tools
The main goals of this repository are:
1. Create a central hub of datasets and tools tailored for energy practitioners with intermediate programming skills.
2. Facilitate energy research efforts and collaborationThe foundation of this repository is inspired by the excellent paper of Hussain Kazmi, Γngrid MunnΓ©-Collabo, Fahad Mehmood, Tahir Abbas Syed and Johan Driesen:
[Towards data-driven energy communities:
a review of open-source datasets, models and tool](https://doi.org/10.1016/j.rser.2021.111290)## π Research Gaps
- Heat Data
- Transportation/Mobility Data
- Data Geographical discrepancy## β Todo
- Mention Research gap
- Write a short description for each source
- Look in [Figshare](https://figshare.com) for new datasets
- Look in [Havard Datavers](https://dataverse.harvard.edu/) for new datasets
- Look in [OFS Home](https://osf.io/) for new datasets
- Look in [Zenodo](https://zenodo.org/) for new datasets
- Look in [Kaggle](https://www.kaggle.com/) for new datasets## β οΈ Important to Mention
[OPSD](https://open-power-system-data.org/)[PyPSA](https://github.com/PyPSA)
[OPT: Open Energy Transition](https://openenergytransition.org/)
[Open Energy Platform](https://openenergy-platform.org/dataedit/schemas)
[Global Energy Monitor](https://globalenergymonitor.org/)
## Missing Data
βοΈ: Dataset is available
β: Dataset not found## Contents
- [Datasets](#datasets)
1. [Electricity-Demand](#electicity-demand)
2. [Heat-Demand](#heat-demand)
3. [Weather-Climate](#weather-climate)
4. [Photovoltaic](#photovoltaic)
5. [Wind-Turbine](#wind-turbine)
- [Tools-Models](#tools-models)
1. [Electricity_Generation](#electricity_generation)
2. [Electricity_Demand](#electicity_demand)
3. [Electricity_Demand](#electicity_demand)
4. [Storage](#storage)
5. [Heat_Demand](#heat_demand)
6. [Building-System-Simulation](#building-system-simulation)
7. [Power-Systems-Grid-Simulation](#power-systems-grid-simulation)
8. [Optimization](#optimization)
- [Visualization](#visualization)
- [Miscellanous](#miscellanous)
- [Papers](#papers)## Datasets
### Electricity-Demand
#### Residential Buildings
| Dataset name | Country | Sites | Duration | Resolution |
|--------------|----------|-------|----------|------------|
| βοΈ[EMBED](http://embed-dataset.org/) | US | 3 | 2-4 weeks| 12 kHz (I, V), 1-2 Hz (plug loads) |
| β[REDD](https://www.reddit.com/r/datasets/comments/11mtihj/redd_a_public_data_set_for_energy_disaggregation/?rdt=34674)| US | 6 | 2-4 weeks| 15 kHz (P, V); 0.5-1 Hz (NILM data at plug/circuit level) |
| β[BLUED](https://tokhub.github.io/dbecd/links/Blued.html)| US | 1 | 1 week | 12 kHz (I, V) |
| βοΈ[PLAID](https://figshare.com/articles/dataset/PLAID_-_A_Voltage_and_Current_Measurement_Dataset_for_Plug_Load_Appliance_Identification_in_Households/10084619) | US | 56 | Summer 2013 and winter 2014 | 30 kHz (I, V) |
| β[ADRES](https://publik.tuwien.ac.at/files/PubDat_178659.pdf) | Austria | 30 | 2 weeks | 1 Hz |
| βοΈ[REFIT](https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned) | UK | 20 | 2 years | 0.125 Hz |
| βοΈ[UK-DALE](https://jack-kelly.com/data/) | UK | 5 | 4 years | 16 kHz (I, V in 3 buildings); 0.17 Hz (appliance-level demand) |
| βοΈ[DRED](https://www.st.ewi.tudelft.nl/~akshay/dred/) | The Netherlands | 1 | | 6 months | 1 Hz (energy demand); 1 minute (ambient conditions) |
| βοΈ[Dataport](https://github.com/Pecan-Street/DataPort-Examples) | US | 1400+ | 4 years | 1 Hz, 1 minute, 15 minutes |
| βοΈ[Smart*](https://traces.cs.umass.edu/index.php/smart/smart) | US | 3 | 3 weeks | 1 Hz |
| βοΈ[AMPds](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FIE0S4) | Canada | 1 | 2 years | 1 minute |
| βοΈ[ECODS](https://vs.inf.ethz.ch/res/show.html?what=eco-data) | Switzerland | 6 | 8 months | 1 Hz |
| βοΈ[PRECON](https://web.lums.edu.pk/~eig/precon.html)| Germany | 11 | 3 years | 1 minute |
| βοΈ[CoSSMic](https://data.open-power-system-data.org/household_data/)| Germany | 11 | 3 years | 1 minute |
| βοΈ[ENERTALK](https://github.com/ch-shin/ENERTALK-dataset)| South Korea | 22 | 29-122 days | 15 Hz |
| βοΈ[SustData](https://osf.io/2ac8q/)| Portugal | 50 | 1144 days | 2 - 10 Hz |#### Commercial Buildings
| Dataset name | Country | Sites | Duration | Resolution |
|-----------------|----------------|------------------------------|-------------|------------|
| βοΈ[BLOND](https://zenodo.org/records/838974) | Germany | Office/lab | 50-230 days | Aggregate: 50-250 kHz, Individual (appliance-level) 6.4 kHz |
| βοΈ[I-BLEND](https://springernature.figshare.com/collections/I-BLEND_a_campus_scale_commercial_and_residential_buildings_electrical_energy_dataset/3893581/1) | India | University | 52 months | 1 minute (load); 10 minutes (occupancy) |
| βοΈ[COMBED](https://combed.github.io/) | India | University | 7+ years | 0.5 minutes |
| βοΈ[Building Data Genome](https://github.com/buds-lab/the-building-data-genome-project) | US, UK, Australia | 500 (offices, universities, commercial) | 1 year | Hourly |
| βοΈ[ASHRAE](https://www.kaggle.com/c/ashrae-energy-prediction) | Worldwide | 1449 | 3 year | Hourly |
| β[IEEE PES]() | Multiple | Multiple | Multiple | Multiple |#### Electric Vehicle
- βοΈ[ElaadNL](https://platform.elaad.io/analyses/ElaadNL_opendata.php)#### Map and Stats
### Heat-Demand
- βοΈ[CU-BEMS](https://www.kaggle.com/datasets/claytonmiller/cubems-smart-building-energy-and-iaq-data)### Weather-Climate
### Photovoltaic
### Wind-Turbine
## Tools-Models
### Electricity_Generation
- [PVGIS](https://re.jrc.ec.europa.eu/pvg_tools/en/)
- [NREL PVWatts](https://pvwatts.nrel.gov/index.php)
- [PVLIB - Python](https://pvlib-python.readthedocs.io/en/stable/)
- [Renewables.ninja](https://www.renewables.ninja/)
- [PyPSA atlite](https://github.com/PyPSA/atlite)
- [feedinlib](https://github.com/oemof/feedinlib)### Electricity_Demand
- [Load Profile Generator (LPG)](https://www.loadprofilegenerator.de/)
- [Artificial Load Profile Generator (ALPG)](https://github.com/utwente-energy/alpg)
- [demandlib](https://github.com/oemof/demandlib)### Storage
### Heat_Demand
- [Demand.ninja](https://demand.ninja/)### Bulding-Systems-Simulation
### Power-systems-grid-simulation
### Optimization
## Visualization
## Forecasting
## Papers