Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ChanChiChoi/awesome-video-segmentation

papers about video segmentation
https://github.com/ChanChiChoi/awesome-video-segmentation

List: awesome-video-segmentation

Last synced: 16 days ago
JSON representation

papers about video segmentation

Awesome Lists containing this project

README

        

# awesome-video-segmentation

collecting the papers about "video segmentation"

some way to extend the result:
- [video segmentation](https://academic.microsoft.com/#/search?iq=@video%20segmentation@&q=video%20segmentation&filters=Y%3E%3D2000&from=0&sort=3) for Microsoft Academic Search

---
### 2010

### 2011

- Ayvaci A, Soatto S. [Detachable object detection: Segmentation and depth ordering from short-baseline video](https://arxiv.org/abs/1109.4683)[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(10): 1942-1951.
- Lawto J, Gauvain J L, Lamel L, et al. [A scalable video search engine based on audio content indexing and topic segmentation](https://arxiv.org/abs/1111.6265)[J]. arXiv preprint arXiv:1111.6265, 2011.

### 2012

- Cheng H T, Ahuja N. [Exploiting nonlocal spatiotemporal structure for video segmentation](https://pdfs.semanticscholar.org/6450/1d4de102f2479c53f2fa4f1df616352f2e02.pdf)[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 741-748.
- Xu C, Xiong C, Corso J J. [Streaming hierarchical video segmentation](http://vcla.stat.ucla.edu/people/~caiming/pubs/ECCV2012_streamgbh.pdf)[C]//European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012: 626-639.
- Lee J, Kwak S, Han B, et al. [Online video segmentation by bayesian split-merge clustering](http://cvlab.postech.ac.kr/~bhhan/papers/eccv2012.pdf)[C]//European conference on computer vision. Springer Berlin Heidelberg, 2012: 856-869.
- Galasso F, Cipolla R, Schiele B. [Video segmentation with superpixels](http://mi.eng.cam.ac.uk/~cipolla/archive/Publications/inproceedings/2012-ACCV-Galasso.pdf)[C]//Asian Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012: 760-774.
- Di X, Chang H, Chen X. [Multi-layer spectral clustering for video segmentation](http://www.jdl.ac.cn/doc/2011/20131101061143328_2012_accv_xfdi_multi-layer%20spectral%20clustering%20for%20video%20segmentation.pdf)[C]//Asian Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012: 1-12.
- Budvytis I, Badrinarayanan V, Cipolla R. [MoT-Mixture of Trees Probabilistic Graphical Model for Video Segmentation](http://mi.eng.cam.ac.uk/~cipolla/publications/inproceedings/2012-BMVC-video-segmentation.pdf)[C]//BMVC. 2012, 1(2): 7.
- Xu C, Corso J J. [Evaluation of super-voxel methods for early video processing](http://web.eecs.umich.edu/~jjcorso/pubs/jcorso_CVPR2012_svx.pdf)[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 1202-1209.

### 2013

- Jain A, Chatterjee S, Vidal R. [Coarse-to-fine semantic video segmentation using supervoxel trees](http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Jain_Coarse-to-Fine_Semantic_Video_2013_ICCV_paper.pdf)[C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 1865-1872.
- Galasso F, Shankar Nagaraja N, Jimenez Cardenas T, et al. [A unified video segmentation benchmark: Annotation, metrics and analysis](http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Galasso_A_Unified_Video_2013_ICCV_paper.pdf)[C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 3527-3534.
- Palou G, Salembier P. [Hierarchical video representation with trajectory binary partition tree](http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Palou_Hierarchical_Video_Representation_2013_CVPR_paper.pdf)[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013: 2099-2106.
- Couprie C, Farabet C, LeCun Y, et al. [Causal graph-based video segmentation](https://arxiv.org/abs/1301.1671)[C]//Image Processing (ICIP), 2013 20th IEEE International Conference on. IEEE, 2013: 4249-4253.
- Şener O, Ugur K, Alatan A A. [Efficient MRF energy propagation for video segmentation via bilateral filters](https://arxiv.org/abs/1301.5356)[J]. IEEE Transactions on Multimedia, 2014, 16(5): 1292-1302.
- Friedman N, Russell S. [Image segmentation in video sequences: A probabilistic approach](https://arxiv.org/abs/1302.1539)[C]//Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1997: 175-181.
- Dushnik D, Schclar A, Averbuch A. [Video segmentation via diffusion bases](https://arxiv.org/abs/1305.0218)[J]. arXiv preprint arXiv:1305.0218, 2013.
- Spina T V, Tepper M, Esler A, et al. [Video human segmentation using fuzzy object models and its application to body pose estimation of toddlers for behavior studies](https://arxiv.org/abs/1305.6918)[J]. arXiv preprint arXiv:1305.6918, 2013.
- Chakroun M, Wali A, Alimi A M. [MAS for video objects segmentation and tracking based on active contours and SURF descriptor(https://arxiv.org/abs/1308.0315)[J]. arXiv preprint arXiv:1308.0315, 2013.
- Xu C, Doell R F, Hanson S J, et al. [A study of actor and action semantic retention in video supervoxel segmentation](https://arxiv.org/abs/1311.3318)[J]. International Journal of Semantic Computing, 2013, 7(04): 353-375.

### 2014

- Galasso F, Keuper M, Brox T, et al. [Spectral graph reduction for efficient image and streaming video segmentation](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Galasso_Spectral_Graph_Reduction_2014_CVPR_paper.pdf)[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 49-56.
- Tripathi S, Hwang Y, Belongie S, et al. [Improving streaming video segmentation with early and mid-level visual processing](https://arxiv.org/abs/1402.3557)[C]//Applications of Computer Vision (WACV), 2014 IEEE Winter Conference on. IEEE, 2014: 477-484.
- Mahdi W, Ardebilian M, Chen L. [Automatic video scene segmentation based on spatial-temporal clues and rhythm](https://arxiv.org/abs/1412.4470)[J]. Networking and Information Systems Journal, 2000, 3(1): 27-52.
- Fragkiadaki K, Arbelaez P, Felsen P, et al. [Learning to segment moving objects in videos](https://arxiv.org/abs/1412.6504)[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 4083-4090.

### 2015

- Yin X, Chen J, Kramer D M. [Joint Multi-Leaf Segmentation, Alignment, and Tracking from Fluorescence Plant Videos](https://arxiv.org/abs/1505.00353)[J]. IEEE transactions on pattern analysis and machine intelligence, 2017.
- Yi S, Pavlovic V. [Multi-cue structure preserving MRF for unconstrained video segmentation](https://arxiv.org/abs/1506.09124)[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 3262-3270.
- Tripathi S, Belongie S, Nguyen T. [Beyond Semantic Image Segmentation: Exploring Efficient Inference in Video](https://arxiv.org/abs/1507.01578)[J]. arXiv preprint arXiv:1507.01578, 2015.
- Kuehne H, Gall J, Serre T. [Cooking in the kitchen: Recognizing and Segmenting Human Activities in Videos](https://arxiv.org/abs/1508.06073)[J]. arXiv preprint arXiv:1508.06073, 2015.
- Kuehne H, Gall J, Serre T. [An end-to-end generative framework for video segmentation and recognition](https://arxiv.org/abs/1509.01947)[C]//Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on. IEEE, 2016: 1-8.
- Tripathi S, Belongie S, Hwang Y, et al. [Semantic video segmentation: Exploring inference efficiency](https://arxiv.org/abs/1509.02441)[C]//SoC Design Conference (ISOCC), 2015 International. IEEE, 2015: 157-158.
- Narayana M, Hanson A, Learned-Miller E. [Coherent motion segmentation in moving camera videos using optical flow orientations](https://arxiv.org/abs/1511.01619)[C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 1577-1584.
- Taylor B, Karasev V, Soatto S. [Causal video object segmentation from persistence of occlusions](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Taylor_Causal_Video_Object_2015_CVPR_paper.pdf)[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 4268-4276.[[code](https://github.com/brianrtaylor/cvos)]

### 2016

- Palazzo S, Spampinato C, Giordano D. [Gamifying Video Object Segmentation](https://arxiv.org/abs/1601.00825)[J]. arXiv preprint arXiv:1601.00825, 2016.
- Mirsharif Q, Sadani S, Shah S, et al. [A Semi-Automated Method for Object Segmentation in Infant’s Egocentric Videos to Study Object Perception](https://arxiv.org/abs/1602.02522)[C]//Proceedings of International Conference on Computer Vision and Image Processing. Springer, Singapore, 2017: 59-69.
- Wang J, Yeung S, Wang J, et al. [Segmentation Rectification for Video Cutout via One-Class Structured Learning](https://arxiv.org/abs/1602.04906)[J]. arXiv preprint arXiv:1602.04906, 2016.
- Yao J, Nielsen F. [SSSC-AM: A unified framework for video co-segmentation by structured sparse subspace clustering with appearance and motion features](https://arxiv.org/abs/1603.04139)[C]//Image Processing (ICIP), 2016 IEEE International Conference on. IEEE, 2016: 3957-3961.
- Bideau P, Learned-Miller E. [It’s moving! A probabilistic model for causal motion segmentation in moving camera videos](https://arxiv.org/abs/1604.00136)[C]//European Conference on Computer Vision. Springer International Publishing, 2016: 433-449.
- Khoreva A, Benenson R, Galasso F, et al. [Improved image boundaries for better video segmentation](https://arxiv.org/abs/1605.03718)[C]//Computer Vision–ECCV 2016 Workshops. Springer International Publishing, 2016: 773-788.
- Valipour S, Siam M, Jagersand M, et al. [Recurrent Fully Convolutional Networks for Video Segmentation](https://arxiv.org/abs/1606.00487)[C]//Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017: 29-36.
- Wang H, Raiko T, Lensu L, et al. [Semi-supervised domain adaptation for weakly labeled semantic video object segmentation](https://arxiv.org/abs/1606.02280)[C]//Asian Conference on Computer Vision. Springer, Cham, 2016: 163-179.
- Keuper M, Brox T. [Point-wise mutual information-based video segmentation with high temporal consistency](https://arxiv.org/abs/1606.02467)[C]//Computer Vision–ECCV 2016 Workshops. Springer International Publishing, 2016: 789-803.
- Spina T V, Falcao A X. [Fomtrace: Interactive video segmentation by image graphs and fuzzy object models](https://arxiv.org/abs/1606.03369)[J]. arXiv preprint arXiv:1606.03369, 2016.
- Jain S D, Grauman K. [Click carving: Segmenting objects in video with point clicks](https://arxiv.org/abs/1607.01115)[J]. arXiv preprint arXiv:1607.01115, 2016.
- Betancourt A, Morerio P, Barakova E, et al. [Left/right hand segmentation in egocentric videos](https://arxiv.org/abs/1607.06264)[J]. Computer Vision and Image Understanding, 2017, 154: 73-81.
- Mahasseni B, Todorovic S, Fern A. [Approximate policy iteration for budgeted semantic video segmentation](https://arxiv.org/abs/1607.07770)[J]. arXiv preprint arXiv:1607.07770, 2016.
- Drayer B, Brox T. [Object detection, tracking, and motion segmentation for object-level video segmentation](https://arxiv.org/abs/1608.03066)[J]. arXiv preprint arXiv:1608.03066, 2016.
- Shelhamer E, Rakelly K, Hoffman J, et al. [Clockwork convnets for video semantic segmentation](https://arxiv.org/abs/1608.03609)[C]//Computer Vision–ECCV 2016 Workshops. Springer International Publishing, 2016: 852-868.
- Fayyaz M, Saffar M H, Sabokrou M, et al. [STFCN: Spatio-Temporal FCN for Semantic Video Segmentation](https://arxiv.org/abs/1608.05971)[J]. arXiv preprint arXiv:1608.05971, 2016.
- Chandrajit M, Girisha R, Vasudev T, et al. [Cast and Self Shadow Segmentation in Video Sequences using Interval based Eigen Value Representation](https://arxiv.org/abs/1608.07807)[J]. CoRR, 2016.
- Cuffaro G, Becattini F, Baecchi C, et al. [Segmentation Free Object Discovery in Video](https://arxiv.org/abs/1609.00221)[C]//Computer Vision–ECCV 2016 Workshops. Springer International Publishing, 2016: 25-31.
- Chiu W C, Galasso F, Fritz M. [Towards Segmenting Consumer Stereo Videos: Benchmark, Baselines and Ensembles](https://arxiv.org/abs/1609.00836)[C]//Asian Conference on Computer Vision. Springer, Cham, 2016: 378-395.
- Prasath V B. [Polyp detection and segmentation from video capsule endoscopy: A review](https://arxiv.org/abs/1609.01915)[J]. Journal of Imaging, 2016, 3(1): 1.
- Jonna S, Nakka K K, Sahay R R. [Deep learning based fence segmentation and removal from an image using a video sequence](https://arxiv.org/abs/1609.07727)[C]//Computer Vision–ECCV 2016 Workshops. Springer International Publishing, 2016: 836-851.
- Mustikovela S K, Yang M Y, Rother C. [Can Ground Truth Label Propagation from Video help Semantic Segmentation?](https://arxiv.org/abs/1610.00731)[C]//Computer Vision–ECCV 2016 Workshops. Springer International Publishing, 2016: 804-820.
- 【OSVOS】Caelles S, Maninis K K, Pont-Tuset J, et al. [One-shot video object segmentation](https://arxiv.org/abs/1611.05198)[C]//CVPR 2017. IEEE, 2017.[[code](https://github.com/scaelles/OSVOS-TensorFlow);[code](https://github.com/kmaninis/OSVOS-PyTorch);[code](https://github.com/kmaninis/OSVOS-caffe)]
- Siam M, Valipour S, Jagersand M, et al. [Convolutional Gated Recurrent Networks for Video Segmentation](https://arxiv.org/abs/1611.05435)[J]. arXiv preprint arXiv:1611.05435, 2016.
- Khoreva A, Perazzi F, Benenson R, et al. [Learning video object segmentation from static images](https://arxiv.org/abs/1612.02646)[J]. arXiv preprint arXiv:1612.02646, 2016.
- Zhang K, Li X, Liu Q. [Unsupervised Video Segmentation via Spatio-Temporally Nonlocal Appearance Learning](https://arxiv.org/abs/1612.08169)[J]. arXiv preprint arXiv:1612.08169, 2016.
- Nilsson D, Sminchisescu C. [Semantic video segmentation by gated recurrent flow propagation](https://arxiv.org/abs/1612.08871)[J]. arXiv preprint arXiv:1612.08871, 2016.
- Tsai Y H, Yang M H, Black M J. [Video segmentation via object flow](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Tsai_Video_Segmentation_via_CVPR_2016_paper.pdf)[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 3899-3908.[[code](https://github.com/wasidennis/ObjectFlow)]

### 2017

- Hong S, Yeo D, Kwak S, et al. [Weakly Supervised Semantic Segmentation using Web-Crawled Videos](https://arxiv.org/abs/1701.00352)[J]. arXiv preprint arXiv:1701.00352, 2017.
- Jain S D, Xiong B, Grauman K. [Fusionseg: Learning to combine motion and appearance for fully automatic segmention of generic objects in videos](https://arxiv.org/abs/1701.05384)[J]. arXiv preprint arXiv:1701.05384, 2017.
- Wang W, Bing S. [Super-trajectory for video segmentation](https://arxiv.org/abs/1702.08634)[J]. arXiv preprint arXiv:1702.08634, 2017.
- Le H, Nguyen V, Yu C P, et al. [Geodesic Distance Histogram Feature for Video Segmentation](https://arxiv.org/abs/1704.00077)[C]//Asian Conference on Computer Vision. Springer, Cham, 2016: 275-290.
- Pont-Tuset J, Perazzi F, Caelles S, et al. [The 2017 davis challenge on video object segmentation](https://arxiv.org/abs/1704.00675)[J]. arXiv preprint arXiv:1704.00675, 2017.
- Caelles S, Chen Y, Pont-Tuset J, et al. [Semantically-Guided Video Object Segmentation](https://arxiv.org/abs/1704.01926)[J]. arXiv preprint arXiv:1704.01926, 2017.
- Talavera E, Dimiccoli M, Bolanos M, et al. [R-clustering for egocentric video segmentation](https://arxiv.org/abs/1704.02809)[C]//Iberian Conference on Pattern Recognition and Image Analysis. Springer, Cham, 2015: 327-336.
- Griffin B A, Corso J J. [Video Object Segmentation using Supervoxel-Based Gerrymandering](https://arxiv.org/abs/1704.05165)[J]. arXiv preprint arXiv:1704.05165, 2017.
- Haller E, Leordeanu M. [Unsupervised object segmentation in video by efficient selection of highly probable positive features](https://arxiv.org/abs/1704.05674)[J]. arXiv preprint arXiv:1704.05674, 2017.
- Tokmakov P, Alahari K, Schmid C. [Learning Video Object Segmentation with Visual Memory](https://arxiv.org/abs/1704.05737)[J]. arXiv preprint arXiv:1704.05737, 2017.
- Wang L, Xiong Y, Wang Z, et al. [Temporal Segment Networks for Action Recognition in Videos](https://arxiv.org/abs/1705.02953)[J]. arXiv preprint arXiv:1705.02953, 2017.
- Ding L, Xu C. [TricorNet: A Hybrid Temporal Convolutional and Recurrent Network for Video Action Segmentation](https://arxiv.org/abs/1705.07818)[J]. arXiv preprint arXiv:1705.07818, 2017.
- Voigtlaender P, Leibe B. [Online adaptation of convolutional neural networks for video object segmentation](https://arxiv.org/abs/1706.09364)[J]. arXiv preprint arXiv:1706.09364, 2017.
- Vora A, Raman S. [Flow-free video object segmentation](https://arxiv.org/abs/1706.09544)[J]. arXiv preprint arXiv:1706.09544, 2017.
- Lee S, Kim D, Lee M, et al. [Where to Play: Retrieval of Video Segments using Natural-Language Queries](https://arxiv.org/abs/1707.00251)[J]. arXiv preprint arXiv:1707.00251, 2017.
- Sharir G, Smolyansky E, Friedman I. [Video object segmentation using tracked object proposals](https://arxiv.org/abs/1707.06545)[J]. arXiv preprint arXiv:1707.06545, 2017.
- Saha S, Singh G, Sapienza M, et al. [Spatio-temporal human action localisation and instance segmentation in temporally untrimmed videos](https://arxiv.org/abs/1707.07213)[J]. arXiv preprint arXiv:1707.07213, 2017.
- Guo C, Lai J, Xie X. [Motion-Appearance Interactive Encoding for Object Segmentation in Unconstrained Videos](https://arxiv.org/abs/1707.07857)[J]. arXiv preprint arXiv:1707.07857, 2017.
- Li X, Qi Y, Wang Z, et al. [Video object segmentation with re-identification](https://arxiv.org/abs/1708.00197)[J]. arXiv preprint arXiv:1708.00197, 2017.
- Ren W, Pan J, Cao X, et al. [Video Deblurring via Semantic Segmentation and Pixel-Wise Non-Linear Kernel](https://arxiv.org/abs/1708.03423)[J]. arXiv preprint arXiv:1708.03423, 2017.
- Saleh F S, Aliakbarian M S, Salzmann M, et al. [Bringing background into the foreground: Making all classes equal in weakly-supervised video semantic segmentation](https://arxiv.org/abs/1708.04400)[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 2125-2135.
- Yoon J S, Rameau F, Kim J, et al. [Pixel-Level Matching for Video Object Segmentation using Convolutional Neural Networks](https://arxiv.org/abs/1708.05137)[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 2186-2195.
- Shivakumara P, Guru D S, Basavaraju H T. [Color and Gradient Features for Text Segmentation from Video Frames](https://arxiv.org/abs/1708.06561)[M]//Multimedia Processing, Communication and Computing Applications. Springer, New Delhi, 2013: 267-278.
- Cheng J, Liu S, Tsai Y H, et al. [Learning to segment instances in videos with spatial propagation network](https://arxiv.org/abs/1709.04609)[J]. arXiv preprint arXiv:1709.04609, 2017.
- Maninis K K, Caelles S, Chen Y, et al. [Video Object Segmentation Without Temporal Information](https://arxiv.org/abs/1709.06031)[J]. arXiv preprint arXiv:1709.06031, 2017.
- Cheng J, Tsai Y H, Wang S, et al. [SegFlow: Joint Learning for Video Object Segmentation and Optical Flow](https://arxiv.org/abs/1709.06750)[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 686-695.[[code](https://github.com/JingchunCheng/SegFlow)]
- Hipiny I, Ujir H, Minoi J L, et al. [Unsupervised Segmentation of Action Segments in Egocentric Videos using Gaze](https://arxiv.org/pdf/1710.00187)[J]. arXiv preprint arXiv:1710.00187, 2017.
- Ke W, Zhu Y, Yu L. [Automatic Streaming Segmentation of Stereo Video Using Bilateral Space](https://arxiv.org/abs/1710.03488)[J]. arXiv preprint arXiv:1710.03488, 2017.
- Anjum N. [Evaluation of Availability of Initial-segments of Video Files in Device-to-Device (D2D) Network](https://arxiv.org/pdf/1710.07083)[J]. arXiv preprint arXiv:1710.07083, 2017.
- Park S J, Hong K S. [Video Semantic Object Segmentation by Self-Adaptation of DCNN](https://arxiv.org/pdf/1711.08180)[J]. arXiv preprint arXiv:1711.08180, 2017.
- Hou R, Chen C, Shah M. [An End-to-end 3D Convolutional Neural Network for Action Detection and Segmentation in Videos](https://arxiv.org/abs/1712.01111)[J]. arXiv preprint arXiv:1712.01111, 2017.

### 2018

- Benard A, Gygli M. [Interactive Video Object Segmentation in the Wild](https://arxiv.org/abs/1801.00269)[J]. arXiv preprint arXiv:1801.00269, 2017.
- Li S, Seybold B, Vorobyov A, et al. [Instance Embedding Transfer to Unsupervised Video Object Segmentation](https://arxiv.org/abs/1801.00908)[J]. arXiv preprint arXiv:1801.00908, 2018.
- Wang W, Shen J, Yang R, et al. Saliency-aware video object segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(1): 20-33.[[code](https://github.com/shenjianbing/Saliency-Aware-Video-Object-Segmentation-old-)]