Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ElektrikAkar/3d_milp
Public repository for 3D-MILP paper.
https://github.com/ElektrikAkar/3d_milp
Last synced: about 2 months ago
JSON representation
Public repository for 3D-MILP paper.
- Host: GitHub
- URL: https://github.com/ElektrikAkar/3d_milp
- Owner: ElektrikAkar
- License: other
- Created: 2020-11-06T13:20:26.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2022-07-22T01:16:21.000Z (over 2 years ago)
- Last Synced: 2024-10-29T20:59:49.172Z (2 months ago)
- Language: MATLAB
- Size: 2.08 MB
- Stars: 6
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- open-sustainable-technology - 3d_milp - Energy Arbitrage Optimization With Battery Storage. (Energy Storage / Battery)
README
# Energy Arbitrage Optimization With Battery Storage: 3D-MILP for Electro-Thermal Performance and Semi-Empirical Aging Models
The tool was created by [Volkan Kumtepeli](https://scholar.google.com/citations?user=Z43mRIsAAAAJ&hl=en) at the Energy Research Institute at Nanyang Technological University
in collaboration with Institute for Electrical Energy Storage Technology at the Technical University of Munich.## How to cite:
V. Kumtepeli, HC. Hesse, M. Schimpe, A. Tripathi, Y. Wang, and A. Jossen,
Energy Arbitrage Optimization With Battery Storage: 3D-MILP for Electro-Thermal Performance and Semi-Empirical Aging Models.
IEEE Access, vol. 8, pp. 204325-204341, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.3035504```
@article{kumtepeli2020energy,
title={Energy Arbitrage Optimization With Battery Storage: 3D-MILP for Electro-Thermal Performance and Semi-Empirical Aging Models},
author={Kumtepeli, Volkan and Hesse, Holger C and Schimpe, Michael and Tripathi, Anshuman and Youyi, Wang and Jossen, Andreas},
journal={IEEE Access},
volume={8},
pages={204325--204341},
year={2020},
publisher={IEEE}
doi={10.1109/ACCESS.2020.3035504},
ISSN={2169-3536},
}```
## Dependencies / Requirements:
* [Gurobi](https://www.gurobi.com/) 9.03
* [YALMIP](https://yalmip.github.io/download/) R20200116
* MATLAB >=2017a for string operations and >=2019a for readmatrix function.
* [Robust Statistical Toolbox](https://github.com/CPernet/Robust_Statistical_Toolbox) (not used but may be necessary for some functions in RainCloudPlots library)
* Partially provided external libraries:
- [RainCloudPlots](https://github.com/RainCloudPlots/RainCloudPlots)
- [cbrewer](https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab)
- [Custom Colormap](https://www.mathworks.com/matlabcentral/fileexchange/69470-custom-colormap)
- [MATLAB-Dataspace-to-Figure-Units](https://github.com/michellehirsch/MATLAB-Dataspace-to-Figure-Units)
- [Tight Subplot](https://www.mathworks.com/matlabcentral/fileexchange/27991-tight_subplot-nh-nw-gap-marg_h-marg_w)## How to use:
Run Optimization_single.m or Optimization_batch.m file. Default settings are given in simulationSettings which can be called with additional settings.