Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/FZJ-IEK3-VSA/glaes
Geospatial Land Availability for Energy Systems
https://github.com/FZJ-IEK3-VSA/glaes
energy geospatial geospatial-analysis python renewable-energy
Last synced: 3 months ago
JSON representation
Geospatial Land Availability for Energy Systems
- Host: GitHub
- URL: https://github.com/FZJ-IEK3-VSA/glaes
- Owner: FZJ-IEK3-VSA
- License: mit
- Created: 2017-12-20T16:19:36.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2024-04-05T07:06:20.000Z (7 months ago)
- Last Synced: 2024-06-11T19:34:57.057Z (5 months ago)
- Topics: energy, geospatial, geospatial-analysis, python, renewable-energy
- Language: Python
- Size: 8.34 MB
- Stars: 42
- Watchers: 12
- Forks: 22
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- open-sustainable-technology - glaes - Geospatial Land Availability for Energy Systems. (Energy Systems / Energy System Modeling Frameworks)
README
# Geospatial Land Availability for Energy Systems (GLAES)
GLAES is a framework for conducting land eligibility analyses and is designed to easily incorporate disparate geospatial information from a variety of sources into a unified solution.
Currently, the main purpose of GLAES is performing land eligibility (LE) analyses which, in short, are used to determine which areas within a region are deemed 'eligible' for some purpose (such as placing a wind turbine).
Although initially intended to operate in the context of distributed renewable energy systems, such as onshore wind and open-field solar parks, the work flow of GLAES is applicable to any context where a constrained indication of land is desired.
Except in the context of Europe, GLAES only provides a framework for conducting these types of analyses, and so the underlying data sources which are used will need to be provided.
Fortunately, GLAES is built on top of the Geospatial Data Abstraction Library (GDAL) and so is capable of incorporating information from any geospatial dataset which GDAL can interpret; including common GIS formats such as .shp and .tif files.
In this way, GLAES affords a high degree of flexibility such that very specific considerations, while still maintaining a consistent application method between studies.[![DOI](https://zenodo.org/badge/114907468.svg)](https://zenodo.org/badge/latestdoi/114907468)
## Features
- Standardized approach to land eligibility analyses
- Applicable in any geographic region and at any resolution
- Can flexibly incorporate most geospatial datasets: including the common .shp and .tif formats
- Simple visualization and storage of results as common image or raster dataset
- Simple integration of results into other analysis (via numpy array)## European Priors
A number of precomputed (Prior) datasets which constitute the most commonly considered criteria used for LE analyses have been constructed for the European context.
These datasets are formatted to be used directly with the GLAES framework and, in doing so, drastically reduce the time requirements, data management, and overall complexity of conducting these analyses.
The Priors also have the added benefit of providing a common data source to all LE researchers, which further promotes consistency between independent LE evaluations.
Most important, usage of these datasets is just as easy as applying exclusions from other geospatial datasources.
Although the Prior datasets are not included when cloning this repository, they can be downloaded from [Mendeley Data](https://data.mendeley.com/datasets/trvfb3nwt2) and installed by unzipping (or placing if downloaded one-by-one) the files in the repo directory `glaes/data/priors`.---
## Example
### A simple LE work flow using GLAES would go as follows:
Objective:
- Determine land eligibility for photovoltaic (PV) modules in the Aachen administration region considering that...
1. PV modules should not cover agricultural areas (because people need to eat)
2. PV modules should not be within 200 meters of a major road way (because they may get dirty)
3. PV modules should not be within 1000 meters of a settlement area (because they are too shiny)```python
ec = ExclusionCalculator(aachenRegion, srs=3035, pixelSize=100)
ec.excludePrior("agriculture_proximity", value=0)
ec.excludePrior("settlement_proximity", value=(None,1000))
ec.excludePrior("roads_main_proximity", value=(None,200))
ec.draw()
```### More Examples
1. [Basic Workflow](Examples/00_basic_workflow.ipynb)
2. [Placement Algorithm](Examples/01_Placement_algorithm.ipynb)---
## Installation
### Recommended installation
The recommended way to install GLAES is to use the conda-package manager. This will ensure that all dependancies are installed correctly and that the package is compatible with your system.
Using the conda package manager of your choice (we recommend [mambaforge](https://github.com/conda-forge/miniforge)), you can install GLAES with the following command:
```bash
conda install -c conda-forge glaes
```If you are installing GLAES into an environment using an environment.yml file, make sure to add the conda-forge channel to the file:
```yaml
channels:
- conda-forge
- defaults
dependencies:
- conda-forge::glaes
```However, we **highly recommend** that you install the package into a new, empty environment, as the dependancies of GLAES may conflict with other packages you have installed. We currently working on a new release which will be compatible with later versions of GDAL (>3.0).
### Alternative installation
The primary dependancies of GLAES are:
1. gdal>2.0.0,<3.0.0
2. GeoKit >= 1.2.4If you can install these modules on you own, then the glaes module should be easily installable with:
```
pip install git+https://github.com/FZJ-IEK3-VSA/glaes.git#egg=glaes
```If, on the otherhand, you prefer an automated installation using Anaconda, then you should be able to follow these steps:
1. First clone a local copy of the repository to your computer, and move into the created directory
```
git clone https://github.com/FZJ-IEK3-VSA/glaes.git
cd glaes
```1. (Alternative) If you want to use the 'dev' branch (or another branch) then use:
```
git checkout dev
```2. GLAES should be installable to a new environment with:
```
conda env create --file requirements.yml
```2. (Alternative) Or into an existing environment with:
```
conda env update --file requirements.yml -n
```2. (Alternative) If you want to install GLAES in editable mode, and also with jupyter notebook and with testing functionalities use:
```
conda env create --file requirements-dev.yml
```---
## Associated papers
If you would like to see a **much** more detailed discussion on land eligibility analysis and see why a framework such as GLAES is not only helpful, but a requirement, please see:
Examples of Land Eligibility evaluation and applications:
- [Uniformly constrained land eligibility for onshore European wind power](https://doi.org/10.1016/j.renene.2019.06.127)
- [The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe](https://doi.org/10.1016/j.apenergy.2019.113794)
- [Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany](http://www.mdpi.com/1996-1073/10/7/957/htm)
---
## Example applications of external institutions
- [Cost-potential curves of onshore wind energy including disamenity costs](https://link.springer.com/article/10.1007/s10640-022-00746-2)
---
## CitationIf you decide to use GLAES anywhere in a published work, please kindly cite us using the following
```bibtex
@article{Ryberg2018,
author = {Ryberg, David and Robinius, Martin and Stolten, Detlef},
doi = {10.3390/en11051246},
issn = {1996-1073},
journal = {Energies},
month = {may},
number = {5},
pages = {1246},
title = {{Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe}},
url = {http://www.mdpi.com/1996-1073/11/5/1246},
volume = {11},
year = {2018}
}
```---
## License
MIT License
Copyright (c) 2017-2022 David Severin Ryberg (FZJ IEK-3), Jochen Linßen (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
You should have received a copy of the MIT License along with this program.
If not, see## About Us
We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary department's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.## Acknowledgment
This work was supported by the Helmholtz Association under the Joint Initiative ["Energy System 2050 – A Contribution of the Research Field Energy"](https://www.helmholtz.de/en/research/energy/energy_system_2050/).