Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/GabrielSten/awesome
List of stuff on the web I think is worth keeping
https://github.com/GabrielSten/awesome
List: awesome
Last synced: 3 months ago
JSON representation
List of stuff on the web I think is worth keeping
- Host: GitHub
- URL: https://github.com/GabrielSten/awesome
- Owner: GabrielSten
- Created: 2022-11-21T15:39:29.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-09-23T10:21:48.000Z (about 1 year ago)
- Last Synced: 2024-04-11T09:01:42.868Z (7 months ago)
- Size: 40 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome - List of stuff on the web I think is worth keeping. (Other Lists / PowerShell Lists)
README
# awesome
List of awesome stuff on the web I think is worth keeping## Contents
- [Data Science](#Data-Science)
- [Graph Tech](#Graph-Tech)
- [Coding](#Coding)
- [Linux](#Linux)
- [Front End](#Front-End)
- [Distributed Systems](#Distributed-Systems)
- [More Awesome](#More-Awesome)## Data-Science
- [Educational Implementation of Algorithms in Python](https://github.com/TheAlgorithms/Python)
- [Data Science Resources](https://github.com/jonathan-bower/DataScienceResources)
- [Physics Informed NN](https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/)
- [Deep Reinforcement Learning](https://github.com/Hadar933/Deep-Reinforcement-Learning)
- [Reinforcement Learning](https://mlu-explain.github.io/reinforcement-learning/)
- [ML visualized](https://mlu-explain.github.io)
- [Aalto Course - Advanced Probablistic Methods](https://fartaha.github.io/ml-advanced-probabilistic-methods/)
- [ChatGPT in 60 lines of NumPy](https://jaykmody.com/blog/gpt-from-scratch/)
- [Free book on deeplearning](https://www.deeplearningbook.org/)
- [Book on ML with PyTorch](https://sebastianraschka.com/blog/2022/ml-pytorch-book.html)
- [DS awesome](https://github.com/Developer-Y/cs-video-courses)
- [Computer Vision Roboflow](https://github.com/roboflow/notebooks)
- [Graph Representation Learning](https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf)## Graph-Tech
- [TypeDB with PyTorch](https://blog.vaticle.com/link-prediction-knowledge-graph-pytorch-geometric-f35917320806)
- [ML inspiration for Graphs](https://blog.vaticle.com/unsolved-machine-learning-problems-that-you-can-solve-35e4ddc561b9)
- [20 Graph Algos and Example Uses](https://memgraph.com/blog/graph-algorithms-applications#toc-12)## Coding
- [Learn Python 3](https://github.com/jerry-git/learn-python3)
- [Efficient Python Coding](https://github.com/youssefHosni/Efficient-Python-for-Data-Scientists)
- [Book on JavaScript](https://eloquentjavascript.net/)
- [Go roadmap](https://roadmap.sh/golang)
- [go generate types from sql](https://github.com/kyleconroy/sqlc?utm_campaign=awesomego&utm_medium=referral&utm_source=awesomego)## Linux
- [Proxmox Beginners Guide](https://github.com/vzamora/Proxmox-Cheatsheet)## Front-End
- [SVGs feather](https://feathericons.com/)
- [SVGs tabler](https://tablericons.com/)
- [SVGs phosphor](https://tablericons.com/)## Distributed-Systems
- [MIT Distributed Systems course](https://www.youtube.com/playlist?list=PLrw6a1wE39_tb2fErI4-WkMbsvGQk9_UB#distributed)
- [Effective Go](https://go.dev/doc/effective_go)
- [Kubebuilder: Intro to K8](https://book.kubebuilder.io/introduction.html)
- [Go Roadmap](https://roadmap.sh/golang)
- [Backend Roadmap](https://roadmap.sh/golang)## More-Awesome
- [Sindresorhus's Awesome](https://github.com/sindresorhus/awesome/blob/main/readme.md)
- [Hand Drawn Sketch Tool](https://github.com/excalidraw/excalidraw)
- [The Harvard Guide for a Resume](https://hwpi.harvard.edu/files/ocs/files/hes-resume-cover-letter-guide.pdf)
- [Diagrams in HTML](https://reactflow.dev/docs/examples/overview/)
- [APIs gRPC](https://cloud.google.com/apis/design)