Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/GarrettLab/HabitatConnectivity
geohabnet R package
https://github.com/GarrettLab/HabitatConnectivity
agriculture crop geographical-information-system geography network-analysis networks r surveillance
Last synced: 3 months ago
JSON representation
geohabnet R package
- Host: GitHub
- URL: https://github.com/GarrettLab/HabitatConnectivity
- Owner: GarrettLab
- License: gpl-3.0
- Created: 2022-11-11T21:02:17.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-05-14T16:49:41.000Z (6 months ago)
- Last Synced: 2024-05-23T07:30:41.091Z (6 months ago)
- Topics: agriculture, crop, geographical-information-system, geography, network-analysis, networks, r, surveillance
- Language: R
- Homepage: https://garrettlab.github.io/HabitatConnectivity/
- Size: 525 MB
- Stars: 7
- Watchers: 5
- Forks: 3
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
- open-sustainable-technology - geohabnet - Enable users to visualise a habitat connectivity risk index for agriculture using their own (Biosphere / Conservation and Restoration)
README
[](https://github.com/GarrettLab/HabitatConnectivity/actions/workflows/pages/pages-build-deployment)
[](https://CRAN.R-project.org/package=geohabnet)# geohabnet
This package expands on [Xing et al
(2021)](https://academic.oup.com/bioscience/article/70/9/744/5875255).
It adds capabilities to customize parameter values using functions and
shows the results of habitat connectivity risk index in the form of
plots. The goal of `geohabnet` is to enable users to visualize a habitat
connectivity risk index using their own parameter values. The risk
analysis outputs 3 maps -1. Mean habitat connectivity (based on a habitat connectivity index
defined by the user)2. Difference in habitat connectivity
3. Variance in habitat connectivity
This package currently supports crop maps sourced from
`geodata::monfredaCrops()` and `geodata::spamCrops()`. This analysis
produces the 3 maps listed above. There are multiple ways in which
functions can be used - generate the final outcome and then the
intermediate outcomes for more sophisticated use cases. The vignettes
provide several examples. The output values are propagated to other
functions for performing operations such as distance matrix calculation.
The values are set in `parameters.yaml` and it can be accessed using
`get_parameters()`. See the usage below.## Installation
Package can either be installed from CRAN:
``` r
install.packages("geohabnet")
#> Installing package into '/private/var/folders/r5/zggvft9d3yn5kh51wqp78rd00000gn/T/RtmpBU77e3/temp_libpath4f5365f57439'
#> (as 'lib' is unspecified)
#>
#> The downloaded binary packages are in
#> /var/folders/r5/zggvft9d3yn5kh51wqp78rd00000gn/T//RtmpBqmkXl/downloaded_packages
```or the source version of package can be installed from
[GitHub](https://github.com/GarrettLab/HabitatConnectivity/) with:``` r
if (!require("devtools")) {
install.packages("devtools")
}devtools::install_github("GarrettLab/HabitatConnectivity", subdir = "geohabnet")
```## geohabnet Example
``` r
library(geohabnet)param_file <- geohabnet::get_parameters()
# now edit the file
geohabnet::set_parameters(new_params = param_file)
```Run the analysis using -
``` r
geohabnet::sensitivity_analysis()
````parameters.yaml` stores the parameter and its values. It can be
accessed and set using `get_parameters()` and `set_parameters()`
respectively. By default risk analysis is run on global index, for which
scales are present in `global_scales()` .Refer to help using ?*geohabnet::fun* or *help(geohabnet::fun)*
Refer to article [*Analyzing risk index using cropland
connectivity*](https://garrettlab.github.io/HabitatConnectivity/articles/analysis.html)
for more elaborate description and usages of functions in this package.