https://github.com/Hongcheng-Gao/Awesome-Long2short-on-LRMs
Awesome-Long2short-on-LRMs is a collection of state-of-the-art, novel, exciting long2short methods on large reasoning models. It contains papers, codes, datasets, evaluations, and analyses.
https://github.com/Hongcheng-Gao/Awesome-Long2short-on-LRMs
List: awesome-long2short-on-lrms
Last synced: about 2 months ago
JSON representation
Awesome-Long2short-on-LRMs is a collection of state-of-the-art, novel, exciting long2short methods on large reasoning models. It contains papers, codes, datasets, evaluations, and analyses.
- Host: GitHub
- URL: https://github.com/Hongcheng-Gao/Awesome-Long2short-on-LRMs
- Owner: Hongcheng-Gao
- Created: 2025-03-10T07:48:09.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2025-04-01T07:35:52.000Z (2 months ago)
- Last Synced: 2025-04-06T00:01:35.206Z (about 2 months ago)
- Homepage:
- Size: 48.8 KB
- Stars: 180
- Watchers: 2
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome_Efficient_LRM_Reasoning - Hongcheng-Gao/Awesome-Long2short-on-LRMs
- Awesome-Efficient-Reasoning - Hongcheng-Gao/Awesome-Long2short-on-LRMs
README
# Awesome-Long2short-on-LRMs
Awesome-Long2short-on-LRMs is a collection of state-of-the-art, novel, exciting **long2short** methods on **large reasoning models**. It contains papers, codes, datasets, evaluations, and analyses.
**Content**
- [Prompt Guidance](#prompt-guidance)
- [Decoding Strategy](#decoding-strategy)
- [Latent Compression](#latent-compression)
- [Parameter Modification](#parameter-modification)
- [Others](#others)## Prompt Guidance
> Prompt guidance generally includes budget guidance and template guidance.| Time | Title | Venue | Paper | Code |
| ---- | -------------------------------------------------------- | :-----: | :-------------------------------------------------------: | :-------------------------------------------------------: |
| 2025.03 | **How Well do LLMs Compress Their Own Chain-of-Thought? A Token Complexity Approach** | arXiv | [link](https://arxiv.org/abs/2503.01141) | [link](https://github.com/Compressed-CoT/compressed-cot) |
| 2025.03 | **Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching** | arXiv | [link](https://arxiv.org/pdf/2503.05179v1) | [link](https://github.com/SimonAytes/SoT) |
| 2025.02 | **Meta-Reasoner: Dynamic Guidance for Optimized Inference-time Reasoning in Large Language Models** | arXiv | [link](https://arxiv.org/pdf/2502.19918) | - |
| 2025.02 | **Chain of Draft: Thinking Faster by Writing Less** | arXiv | [link](https://arxiv.org/pdf/2502.18600) | [link](https://github.com/sileix/chain-of-draft) |
| 2025.02 | **Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models** | arXiv | [link](https://arxiv.org/abs/2502.13260) | - |
| 2024.12 | **Token-Budget-Aware LLM Reasoning** | arXiv | [link](https://arxiv.org/abs/2412.18547) | [link](https://github.com/GeniusHTX/TALE) |
| 2024.07 | **Concise Thoughts: Impact of Output Length on LLM Reasoning and Cost** | arXiv | [link](https://arxiv.org/abs/2407.19825) | - |
| 2023.05 | **Chain-of-Symbol Prompting Elicits Planning in Large Langauge Models** | arXiv | [link](https://arxiv.org/abs/2305.10276) | [link](https://github.com/hanxuhu/chain-of-symbol-planning) |## Decoding Strategy
| Time | Title | Venue | Paper | Code |
| ---- | -------------------------------------------------------- | :-----: | :-------------------------------------------------------: | :-------------------------------------------------------: |
| 2025.02 | **When More is Less: Understanding Chain-of-Thought Length in LLMs** | arXiv | [link](https://arxiv.org/abs/2502.07266) | - |
| 2025.02 | **Stepwise Informativeness Search for Improving LLM Reasoning** | arXiv | [link](https://arxiv.org/abs/2502.15335) | [link](https://github.com/SiyuanWangw/Informativeness-Search) |
| 2024.12 | **Efficiently Serving LLM Reasoning Programs with Certaindex** | arXiv | [link](https://arxiv.org/abs/2412.20993) | [link](https://github.com/hao-ai-lab/Dynasor) |## Latent Compression
| Time | Title | Venue | Paper | Code |
| ---- | -------------------------------------------------------- | :-----: | :-------------------------------------------------------: | :-------------------------------------------------------: |
| 2025.02 | **CODI: Compressing Chain-of-Thought into Continuous Space via Self-Distillation** | arXiv | [link](https://arxiv.org/pdf/2502.21074) | - |
| 2025.02 | **LightThinker: Thinking Step-by-Step Compression** | arXiv | [link](https://arxiv.org/abs/2502.15589) | [link](https://github.com/zjunlp/LightThinker) |
| 2025.02 | **Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach** | arXiv | [link](https://arxiv.org/pdf/2502.05171) | [link](https://github.com/seal-rg/recurrent-pretraining) |
| 2025.02 | **Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning** | arXiv | [link](https://arxiv.org/abs/2502.03275) | - |
| 2025.01 | **Efficient Reasoning with Hidden Thinking** | arXiv | [link](https://arxiv.org/abs/2501.19201) | - |
| 2024.12 | **Training Large Language Model to Reason in a Continuous Latent Space** | arXiv | [link](https://arxiv.org/pdf/2412.06769v2) | [link](https://github.com/facebookresearch/coconut) |
| 2024.12 | **Compressed Chain of Thought: Efficient Reasoning through Dense Representations** | arXiv | [link](https://arxiv.org/pdf/2412.13171) | - |
| 2024.05 | **From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step** | arXiv | [link](https://arxiv.org/pdf/2405.14838) | [link](https://github.com/da03/internalize_cot_step_by_step) |
| 2024.03 | **Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking** | arXiv | [link](https://arxiv.org/abs/2403.09629) | [link](https://github.com/ezelikman/quiet-star) |
| 2023.10 | **Think before you speak: Training Language Models With Pause Tokens** | arXiv | [link](https://arxiv.org/abs/2310.02226v3) | - |## Parameter Modification
> Parameter modification generally includes SFT/RL, model merging, model distillation and so on.| Time | Title | Venue | Paper | Code |
| ---- | -------------------------------------------------------- | :-----: | :-------------------------------------------------------: | :-------------------------------------------------------: |
| 2025.03 | **DAPO: an Open-source RL System from ByteDance Seed and Tsinghua AIR** | arXiv | [link](https://dapo-sia.github.io/static/pdf/dapo_paper.pdf) | [link](https://github.com/volcengine/verl/tree/gm-tyx/puffin/main/recipe/dapo) |
| 2025.03 | **Optimizing Test-Time Compute via Meta Reinforcement Finetuning** | arXiv | [link](https://arxiv.org/pdf/2503.07572) | [link](https://github.com/CMU-AIRe/MRT) |
| 2025.03 | **DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models** | arXiv | [link](https://arxiv.org/abs/2503.04472) | - |
| 2025.03 | **L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning** | arXiv | [link](https://www.arxiv.org/pdf/2503.04697) | [link](https://github.com/cmu-l3/l1) |
| 2025.03 | **InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models** | arXiv | [link](https://arxiv.org/abs/2503.06692) | - |
| 2025.03 | **EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test** | arXiv | [link](https://arxiv.org/pdf/2503.01840v1) | [link](https://github.com/SafeAILab/EAGLE) |
| 2025.02 | **Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs** | arXiv | [link](https://arxiv.org/abs/2412.21187) | - |
| 2025.02 | **Self-Training Elicits Concise Reasoning in Large Language Models** | arXiv | [link](https://arxiv.org/abs/2502.20122) | [link](https://github.com/TergelMunkhbat/concise-reasoning) |
| 2025.02 | **TokenSkip: Controllable Chain-of-Thought Compression in LLMs** | arXiv | [link](https://arxiv.org/abs/2502.12067) | [link](https://github.com/hemingkx/TokenSkip) |
| 2025.02 | **s1: Simple test-time scaling** | arXiv | [link](https://arxiv.org/abs/2501.19393) | [link](https://github.com/simplescaling/s1) |
| 2025.02 | **CoT-Valve: Length-Compressible Chain-of-Thought Tuning** | arXiv | [link](https://arxiv.org/abs/2502.09601) | [link](https://github.com/horseee/CoT-Valve) |
| 2025.02 | **Training Language Models to Reason Efficiently** | arXiv | [link](https://arxiv.org/abs/2502.04463) | [link](https://github.com/Zanette-Labs/efficient-reasoning) |
| 2025.02 | **Claude 3.7 Sonnet and Claude Code** | Anthropic | [link](https://www.anthropic.com/news/claude-3-7-sonnet) | - |
| 2025.01 | **Kimi k1.5: Scaling Reinforcement Learning with LLMs** | arXiv | [link](https://arxiv.org/abs/2501.12599) | - |
| 2025.01 | **Think Smarter not Harder: Adaptive Reasoning with Inference Aware Optimization** | arXiv | [link](https://arxiv.org/abs/2501.17974) | - |
| 2025.01 | **O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning** | arXiv | [link](https://arxiv.org/abs/2501.12570) | [link](https://github.com/StarDewXXX/O1-Pruner) |
| 2024.12 | **C3oT: Generating Shorter Chain-of-Thought without Compromising Effectiveness** | arXiv | [link](https://arxiv.org/abs/2412.11664) | - |
| 2024.12 | **Verbosity-Aware Rationale Reduction: Effective Reduction of Redundant Rationale via Principled Criteria** | arXiv | [link](https://arxiv.org/abs/2412.21006) | - |
| 2024.11 | **Can Language Models Learn to Skip Steps?** | arXiv | [link](https://arxiv.org/abs/2411.01855) | [link](https://github.com/tengxiaoliu/LM_skip) |## Others
| Time | Title | Venue | Paper | Code |
| ---- | -------------------------------------------------------- | :-----: | :-------------------------------------------------------: | :-------------------------------------------------------: |
| 2025.03 | **A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond** | arXiv | [link](https://arxiv.org/abs/2503.21614) | [link](https://github.com/XiaoYee/Awesome_Efficient_LRM_Reasoning) |
| 2024.12 | **Bag of Tricks for Inference-time Computation of LLM Reasoning** | arXiv | [link](https://arxiv.org/abs/2502.07191) | [link](https://github.com/usail-hkust/benchmark_inference_time_computation_LLM) |