Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/IAMconsortium/pyam

Analysis & visualization of energy & climate scenarios
https://github.com/IAMconsortium/pyam

analysis energy-systems iamc-format integrated-assessment integrated-assessment-scenarios macro-energy modeling pyam scenario scenario-data timeseries-format visualization

Last synced: 2 months ago
JSON representation

Analysis & visualization of energy & climate scenarios

Awesome Lists containing this project

README

        

pyam: analysis & visualization
of integrated-assessment and macro-energy scenarios
=========================================================================================

[![license](https://img.shields.io/badge/license-Apache%202.0-black)](https://github.com/IAMconsortium/pyam/blob/main/LICENSE)
[![pypi](https://img.shields.io/pypi/v/pyam-iamc.svg)](https://pypi.python.org/pypi/pyam-iamc/)
[![conda](https://img.shields.io/conda/vn/conda-forge/pyam?logo=anaconda)](https://anaconda.org/conda-forge/pyam)
[![last-release](https://img.shields.io/github/release-date/iamconsortium/pyam?logo=github&label=last%20release)](https://github.com/IAMconsortium/pyam/releases)

[![Code style: ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![python](https://img.shields.io/badge/python-≥3.10,<3.13-blue?logo=python&logoColor=white)](https://github.com/IAMconsortium/pyam)
[![pytest](https://img.shields.io/github/actions/workflow/status/iamconsortium/pyam/pytest.yml?logo=GitHub&label=pytest)](https://github.com/IAMconsortium/pyam/actions/workflows/pytest.yml)
[![ReadTheDocs](https://readthedocs.org/projects/pyam-iamc/badge/?version=latest)](https://pyam-iamc.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/IAMconsortium/pyam/branch/main/graph/badge.svg)](https://codecov.io/gh/IAMconsortium/pyam)

[![doi](https://zenodo.org/badge/113359260.svg)](https://doi.org/10.5281/zenodo.1470400)
[![ORE](https://img.shields.io/badge/ORE-10.12688/openreseurope.13633.2-blue)](https://doi.org/10.12688/openreseurope.13633.2)
[![joss](https://joss.theoj.org/papers/10.21105/joss.01095/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01095)
[![groups.io](https://img.shields.io/badge/mail-groups.io-blue)](https://pyam.groups.io/g/forum)
[![slack](https://img.shields.io/badge/chat-Slack-orange)](https://pyam-iamc.slack.com)

****

Overview and scope
------------------

The open-source Python package **pyam** provides a suite of tools and functions
for analyzing and visualizing input data (i.e., assumptions/parametrization)
and results (model output) of integrated-assessment models,
macro-energy scenarios, energy systems analysis, and sectoral studies.

The comprehensive **documentation** is hosted on [Read the Docs](https://pyam-iamc.readthedocs.io)!

### Key features

- Simple analysis of scenario timeseries data with an interface similar in feel & style
to the widely used [pandas.DataFrame](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)
- Advanced visualization and plotting functions
(see the [gallery](https://pyam-iamc.readthedocs.io/en/stable/gallery/index.html))
- Scripted validation and processing of scenario data and results

### Timeseries types & data formats

#### Yearly data

The pyam package was initially developed to work with the *IAMC template*,
a timeseries format for *yearly data* developed and used by the
[Integrated Assessment Modeling Consortium](https://www.iamconsortium.org) (IAMC).

| **model** | **scenario** | **region** | **variable** | **unit** | **2005** | **2010** | **2015** |
|-----------|--------------|------------|----------------|----------|----------|----------|----------|
| MESSAGE | CD-LINKS 400 | World | Primary Energy | EJ/y | 462.5 | 500.7 | ... |
| ... | ... | ... | ... | ... | ... | ... | ... |

*An illustration of the IAMC template using a scenario
from the [CD-LINKS](https://www.cd-links.org) project*
*via the The [IAMC 1.5°C Scenario Explorer](https://data.ece.iiasa.ac.at/iamc-1.5c-explorer)*

#### Subannual time resolution

The package also supports timeseries data with a *sub-annual time resolution*:
- Continuous-time data using the Python [datetime format](https://docs.python.org/3/library/datetime.html)
- "Representative timeslices" (e.g., "winter-night", "summer-day")
using the pyam *extra-columns* feature

[Read the docs](https://pyam-iamc.readthedocs.io/en/stable/data.html)
for more information about the pyam data model
or look at the [data-table tutorial](https://pyam-iamc.readthedocs.io/en/stable/tutorials/data_table_formats.html)
to see how to cast from a variety of timeseries formats to a **pyam.IamDataFrame**.

Installation
------------

### pip

> [!WARNING]
> The **pyam** package is distributed on https://pypi.org under the name **pyam-iamc**.

https://pypi.org/project/pyam-iamc/

Please install using
```
pip install pyam-iamc
```

### conda

https://anaconda.org/conda-forge/pyam

Please install using
```
conda install pyam
```

### install from source

To install from source (including all dependencies) after cloning this repository, run

```
pip install --editable .[tests,optional_io_formats,tutorials]
```

To check that the package was installed correctly, run

```
pytest tests
```

Tutorials
---------

An introduction to the basic functions is shown
in [the "first-steps" notebook](docs/tutorials/pyam_first_steps.ipynb).

All tutorials are available in rendered format (i.e., with output) as part of
the [online documentation](https://pyam-iamc.readthedocs.io/en/stable/tutorials.html).
The source code of the tutorials notebooks is available
in the folder [docs/tutorials](docs/tutorials) of this repository.

Documentation
-------------

The comprehensive documentation is hosted on [Read the Docs](https://pyam-iamc.readthedocs.io).

The documentation pages can be built locally,
refer to the instruction in [docs/README](docs/README.md).

Authors & Contributors
----------------------

This package was initiated and is currently maintained
by Matthew Gidden ([@gidden](https://github.com/gidden))
and Daniel Huppmann ([@danielhuppmann](https://github.com/danielhuppmann/)).
See the complete [list of contributors](AUTHORS.rst).

The core maintenance of the package is done by
the *Scenario Services & Scientific Software* research theme
at the IIASA Energy, Climate, and Enviroment program.
Visit https://software.ece.iiasa.ac.at for more information.

Scientific publications
-----------------------

The following manuscripts describe the **pyam** package
at specific stages of development.

The source documents are available in
the [manuscripts](https://github.com/IAMconsortium/pyam/tree/main/manuscripts) folder
of the GitHub repository.

### Release v1.0 (June 2021)

Published to mark the first major release of the **pyam** package.

> Daniel Huppmann, Matthew Gidden, Zebedee Nicholls, Jonas Hörsch, Robin Lamboll,
Paul Natsuo Kishimoto, Thorsten Burandt, Oliver Fricko, Edward Byers, Jarmo Kikstra,
Maarten Brinkerink, Maik Budzinski, Florian Maczek, Sebastian Zwickl-Bernhard,
Lara Welder, Erik Francisco Alvarez Quispe, and Christopher J. Smith.
*pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios.*
**Open Research Europe**, 2021.
doi: [10.12688/openreseurope.13633.2](https://doi.org/10.12688/openreseurope.13633.2)

### Release v0.1.2 (November 2018)

Published following the successful application of **pyam**
in the IPCC SR15 and the Horizon 2020 CRESCENDO project.

> Matthew Gidden and Daniel Huppmann.
*pyam: a Python package for the analysis and visualization of models of the interaction
of climate, human, and environmental systems.*
**Journal of Open Source Software (JOSS)**, 4(33):1095, 2019.
doi: [10.21105/joss.01095](https://doi.org/10.21105/joss.01095).

License
-------

Copyright 2017-2024 IIASA and the pyam developer team

The **pyam** package is licensed
under the Apache License, Version 2.0 (the "License");
see [LICENSE](LICENSE) and [NOTICE](NOTICE.md) for details.