Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Indoxer/LKAN
Variations of Kolmogorov-Arnold Networks
https://github.com/Indoxer/LKAN
machine-learning
Last synced: about 1 month ago
JSON representation
Variations of Kolmogorov-Arnold Networks
- Host: GitHub
- URL: https://github.com/Indoxer/LKAN
- Owner: Indoxer
- License: mit
- Created: 2024-05-04T16:21:22.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-05-13T19:43:41.000Z (8 months ago)
- Last Synced: 2024-05-14T17:22:39.095Z (8 months ago)
- Topics: machine-learning
- Language: Python
- Homepage:
- Size: 3.31 MB
- Stars: 82
- Watchers: 4
- Forks: 11
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-kan - Large Kolmogorov-Arnold Networks - Arnold Networks (including CUDA-supported KAN convolutions) | ![Github stars](https://img.shields.io/github/stars/Indoxer/LKAN.svg) (Library / Theorem)
- awesome-kan - Large Kolmogorov-Arnold Networks - Arnold Networks (including CUDA-supported KAN convolutions) | ![Github stars](https://img.shields.io/github/stars/Indoxer/LKAN.svg) (Library / Theorem)
README
# Large Kolmogorov-Arnold Networks
Implementations of KAN variations.## Installation
1. Install [conda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html)
2. Install CUDA (If you can run CUDA pytorch code, then it should works)
3. Run `bash -l install.sh` (in future `install.cmd`)## Running
Activate conda env `conda activate lkan`
To run mnist select config in `main.py` and run `main.py`.
To view charts, run `tensorboard --logdir ./.experiments/`
## Docs
See examples/
Only done so far:
- `continual_training_adam.ipynb`, `continual_training_lbfgs.ipynb`
## Contribution/Development
#### Contact
If you have any questions, please create issue or contact [email protected]#### Additional development packages/apps:
- cuda-toolkit (nsight compute, etc.)#### Good to know:
1. To run nvidia nsight compute on kernels:
- Add conda python interpreter as executable and python file as args.
- Install lkancpp `CUDA_LINEINFO=1 pip install ./lkancpp/` to see kernels code.
2. Installing packages:
- `pip install .` to update package after modifying `lkan/`
- `pip install ./lkancpp` to recompile lkancpp.## TODO/Ideas:
- [ ] Use cmake for lkancpp build.
- [ ] remove unnecessary dependencies in requirements.txt
- [ ] test update_grid and "Other possibilities are: (a) the grid is learnable with gradient descent" from paper.
- [ ] Implement and test (examples notebook) Regularization
- [ ] Implement and test (examples notebook) grid extension
- [ ] MNIST (yaml config to run, model + readme with results)
- [ ] CIFAR10 (yaml config to run, model + readme with results)
- [ ] Test KAN convolution
- [ ] Test KAN as patches encoder in VIT.
- [ ] Implement KAN in latent space (... -> Linear -> KAN -> Linear -> ...)
- [ ] Implement plotting. (plot layers and KAN model)
- [ ] Test scaling behavior on toy dataset (examples notebook)
- [ ] Test scaling behavior on MNIST/CIFAR10 (examples notebook)
- [ ] Test Legendre and Chebyshev polynomials
- [ ] Test Gaussian KAN
- [ ] Write functions to prune KAN layers.
- [ ] Write unit tests for used methods (CUDA version matching pytorch version, pytorch version tests on simple examples)## Problems
- [ ] update_grid on cuda raise error (torch.linalg.lstsq assume full rank on cuda, only one algorithm) - solved temporary, moved calculating lstsq to cpu
- [ ] update_grid_from_samples in original KAN run model multiple times, is it necessary?
- [ ] parameters counting, is grid parameter or not?
- [ ] MLP training is almost instant, but KAN train slow on start## Citations
```python
@misc{liu2024kan,
title={KAN: Kolmogorov-Arnold Networks},
author={Ziming Liu and Yixuan Wang and Sachin Vaidya and Fabian Ruehle and James Halverson and Marin Soljačić and Thomas Y. Hou and Max Tegmark},
year={2024},
eprint={2404.19756},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
[Original KAN repo](https://github.com/KindXiaoming/pykan) - base idea[efficient-kan](https://github.com/Blealtan/efficient-kan) - KANLinear and optimizations
Thanks to [Paluzki](https://github.com/paluzki) for proposing Gaussian KAN (KANLinearG - in progress)