Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-kan
A comprehensive collection of KAN(Kolmogorov-Arnold Network)-related resources, including libraries, projects, tutorials, papers, and more, for researchers and developers in the Kolmogorov-Arnold Network field.
https://github.com/mintisan/awesome-kan
Last synced: 2 days ago
JSON representation
-
Papers
-
- Chebyshev Polynomial-Based Kolmogorov-Arnold Networks
- Kolmogorov-Arnold Networks (KANs) for Time Series Analysis
- Wav-KAN: Wavelet Kolmogorov-Arnold Networks
- KAN or MLP: A Fairer Comparison - spline activation function. | [code](https://github.com/yu-rp/KANbeFair) | ![Github stars](https://img.shields.io/github/stars/yu-rp/kanbefair.svg)
- KAN: Kolmogorov-Arnold Networks - Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametrized as a spline. We show that this seemingly simple change makes KANs outperform MLPs in terms of accuracy and interpretability. For accuracy, much smaller KANs can achieve comparable or better accuracy than much larger MLPs in data fitting and PDE solving. Theoretically and empirically, KANs possess faster neural scaling laws than MLPs. For interpretability, KANs can be intuitively visualized and can easily interact with human users. Through two examples in mathematics and physics, KANs are shown to be useful collaborators helping scientists (re)discover mathematical and physical laws. In summary, KANs are promising alternatives for MLPs, opening opportunities for further improving today's deep learning models which rely heavily on MLPs.
- KAN 2.0: Kolmogorov-Arnold Networks Meet Science
- KAN: Kolmogorov-Arnold Networks - Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametrized as a spline. We show that this seemingly simple change makes KANs outperform MLPs in terms of accuracy and interpretability. For accuracy, much smaller KANs can achieve comparable or better accuracy than much larger MLPs in data fitting and PDE solving. Theoretically and empirically, KANs possess faster neural scaling laws than MLPs. For interpretability, KANs can be intuitively visualized and can easily interact with human users. Through two examples in mathematics and physics, KANs are shown to be useful collaborators helping scientists (re)discover mathematical and physical laws. In summary, KANs are promising alternatives for MLPs, opening opportunities for further improving today's deep learning models which rely heavily on MLPs.
- KAN or MLP: A Fairer Comparison - spline activation function. | [code](https://github.com/yu-rp/KANbeFair) | ![Github stars](https://img.shields.io/github/stars/yu-rp/kanbefair.svg)
- DropKAN: Regularizing KANs by masking post-activations - Arnold Networks) is a regularization method that prevents co-adaptation of activation function weights in Kolmogorov-Arnold Networks (KANs). DropKAN operates by randomly masking some of the post-activations within the KANs computation graph, while scaling-up the retained post-activations. We show that this simple procedure that require minimal coding effort has a regularizing effect and consistently lead to better generalization of KANs. | [code](https://github.com/Ghaith81/dropkan) | ![Github stars](https://img.shields.io/github/stars/Ghaith81/dropkan.svg)
- Rethinking the Function of Neurons in KANs - Arnold Networks (KANs) perform a simple summation motivated by the Kolmogorov-Arnold representation theorem, Our findings indicate that substituting the sum with the average function in KAN neurons results in significant performance enhancements compared to traditional KANs. Our study demonstrates that this minor modification contributes to the stability of training by confining the input to the spline within the effective range of the activation function. | [code](https://github.com/Ghaith81/dropkan) | ![Github stars](https://img.shields.io/github/stars/Ghaith81/dropkan.svg)
- DropKAN: Regularizing KANs by masking post-activations - Arnold Networks) is a regularization method that prevents co-adaptation of activation function weights in Kolmogorov-Arnold Networks (KANs). DropKAN operates by randomly masking some of the post-activations within the KANs computation graph, while scaling-up the retained post-activations. We show that this simple procedure that require minimal coding effort has a regularizing effect and consistently lead to better generalization of KANs. | [code](https://github.com/Ghaith81/dropkan) | ![Github stars](https://img.shields.io/github/stars/Ghaith81/dropkan.svg)
- SigKAN: Signature-Weighted Kolmogorov-Arnold Networks for Time Series
- Demonstrating the Efficacy of Kolmogorov-Arnold Networks in Vision Tasks - in-VIsion) | ![Github stars](https://img.shields.io/github/stars/jmj2316/KAN-in-VIsion.svg)
- Gaussian Process Kolmogorov-Arnold Networks
- Kolmogorov--Arnold networks in molecular dynamics
- KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems
- GNN-SKAN: Harnessing the Power of SwallowKAN to Advance Molecular Representation Learning with GNNs
- SigKAN: Signature-Weighted Kolmogorov-Arnold Networks for Time Series
- Demonstrating the Efficacy of Kolmogorov-Arnold Networks in Vision Tasks - in-VIsion) | ![Github stars](https://img.shields.io/github/stars/jmj2316/KAN-in-VIsion.svg)
- CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis - Arnold Networks, which combines both interpretability and high performance. CoxKAN outperforms traditional models like the Cox proportional hazards model and rivals deep learning-based models, but with the advantage of interpretability, making it more useful in medical settings where understanding the underlying risk factors and relationships is essential. We find that CoxKAN extracts complex interactions between predictor variables and identifies the precise effect of important biomarkers on patient survival. | [code](https://github.com/knottwill/coxkan) | ![Github stars](https://img.shields.io/github/stars/knottwill/coxkan.svg)
- Kolmogorov-Arnold Transformer
- Chebyshev Polynomial-Based Kolmogorov-Arnold Networks
- Convolutional Kolmogorov-Arnold Networks - KANs) | ![Github stars](https://img.shields.io/github/stars/AntonioTepsich/Convolutional-KANs.svg)
- Kolmogorov-Arnold Convolutions: Design Principles and Empirical Studies - conv-kan) | ![Github stars](https://img.shields.io/github/stars/IvanDrokin/torch-conv-kan.svg)
- Smooth Kolmogorov Arnold networks enabling structural knowledge representation
- TKAN: Temporal Kolmogorov-Arnold Networks
- ReLU-KAN: New Kolmogorov-Arnold Networks that Only Need Matrix Addition, Dot Multiplication, and ReLU
- CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis - Arnold Networks, which combines both interpretability and high performance. CoxKAN outperforms traditional models like the Cox proportional hazards model and rivals deep learning-based models, but with the advantage of interpretability, making it more useful in medical settings where understanding the underlying risk factors and relationships is essential. We find that CoxKAN extracts complex interactions between predictor variables and identifies the precise effect of important biomarkers on patient survival. | [code](https://github.com/knottwill/coxkan) | ![Github stars](https://img.shields.io/github/stars/knottwill/coxkan.svg)
- RKAN: Residual Kolmogorov-Arnold Network - Arnold Network (RKAN) is designed to enhance the performance of classic CNNs by incorporating RKAN blocks into existing architectures. | [code](https://github.com/withray/residualKAN) ![GitHub stars](https://img.shields.io/github/stars/withray/residualKAN.svg)
- U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation - AIM-Group/U-KAN) | ![Github stars](https://img.shields.io/github/stars/CUHK-AIM-Group/U-KAN.svg)
- Kolmogorov-Arnold Networks (KANs) for Time Series Analysis
- A Temporal Kolmogorov-Arnold Transformer for Time Series Forecasting
- Inferring turbulent velocity and temperature fields and their statistics from Lagrangian velocity measurements using physics-informed Kolmogorov-Arnold Networks
- Effective Integration of KAN for Keyword Spotting
- RKAN: Residual Kolmogorov-Arnold Network - Arnold Network (RKAN) is designed to enhance the performance of classic CNNs by incorporating RKAN blocks into existing architectures. | [code](https://github.com/withray/residualKAN) ![GitHub stars](https://img.shields.io/github/stars/withray/residualKAN.svg)
- Chebyshev Polynomial-Based Kolmogorov-Arnold Networks
- Kolmogorov-Arnold Transformer
- Kolmogorov Arnold Informed neural network: A physics-informed deep learning framework for solving PDEs based on Kolmogorov Arnold Networks - wang/research-on-solving-partial-differential-equations-of-solid-mechanics-based-on-pinn) | ![Github stars](https://img.shields.io/github/stars/yizheng-wang/research-on-solving-partial-differential-equations-of-solid-mechanics-based-on-pinn.svg)
- Kolmogorov-Arnold Convolutions: Design Principles and Empirical Studies - conv-kan) | ![Github stars](https://img.shields.io/github/stars/IvanDrokin/torch-conv-kan.svg)
- Smooth Kolmogorov Arnold networks enabling structural knowledge representation
- TKAN: Temporal Kolmogorov-Arnold Networks
- Kolmogorov Arnold Informed neural network: A physics-informed deep learning framework for solving PDEs based on Kolmogorov Arnold Networks - wang/research-on-solving-partial-differential-equations-of-solid-mechanics-based-on-pinn) | ![Github stars](https://img.shields.io/github/stars/yizheng-wang/research-on-solving-partial-differential-equations-of-solid-mechanics-based-on-pinn.svg)
- Convolutional Kolmogorov-Arnold Networks - KANs) | ![Github stars](https://img.shields.io/github/stars/AntonioTepsich/Convolutional-KANs.svg)
- DeepOKAN: Deep Operator Network Based on Kolmogorov Arnold Networks for Mechanics Problems
- ReLU-KAN: New Kolmogorov-Arnold Networks that Only Need Matrix Addition, Dot Multiplication, and ReLU
- U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation - AIM-Group/U-KAN) | ![Github stars](https://img.shields.io/github/stars/CUHK-AIM-Group/U-KAN.svg)
- Kolmogorov-Arnold Networks (KANs) for Time Series Analysis
- Wav-KAN: Wavelet Kolmogorov-Arnold Networks
- fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
- BSRBF-KAN: A combination of B-splines and Radial Basic Functions in Kolmogorov-Arnold Networks
- GraphKAN: Enhancing Feature Extraction with Graph Kolmogorov Arnold Networks
- BSRBF-KAN: A combination of B-splines and Radial Basic Functions in Kolmogorov-Arnold Networks
- GraphKAN: Enhancing Feature Extraction with Graph Kolmogorov Arnold Networks
- A First Look at Kolmogorov-Arnold Networks in Surrogate-assisted Evolutionary Algorithms - EA)| ![Github stars](https://img.shields.io/github/stars/Jinfeng-Xu/FKAN-GCF.svg)
- fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
- Gaussian Process Kolmogorov-Arnold Networks
- Kolmogorov--Arnold networks in molecular dynamics
- Kolmogorov-Arnold Network for Online Reinforcement Learning - PPO) | ![Github stars](https://img.shields.io/github/stars/victorkich/Kolmogorov-PPO.svg)
- FourierKAN-GCF: Fourier Kolmogorov-Arnold Network--An Effective and Efficient Feature Transformation for Graph Collaborative Filtering - Xu/FKAN-GCF) | ![Github stars](https://img.shields.io/github/stars/Jinfeng-Xu/FKAN-GCF.svg)
- KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search
- A Comprehensive Survey on Kolmogorov Arnold Networks (KAN)
- Sparks of Quantum Advantage and Rapid Retraining in Machine Learning - KAN) | ![Github stars](https://img.shields.io/github/stars/wtroy2/Quantum-KAN.svg)
- Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks
- rKAN: Rational Kolmogorov-Arnold Networks
- A deep machine learning algorithm for construction of the Kolmogorov–Arnold representation
- Inferring turbulent velocity and temperature fields and their statistics from Lagrangian velocity measurements using physics-informed Kolmogorov-Arnold Networks
- A Comprehensive Survey on Kolmogorov Arnold Networks (KAN)
- A deep machine learning algorithm for construction of the Kolmogorov–Arnold representation
- KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search
- Sparks of Quantum Advantage and Rapid Retraining in Machine Learning - KAN) | ![Github stars](https://img.shields.io/github/stars/wtroy2/Quantum-KAN.svg)
- Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks
- TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling - kanrecon) | ![Github stars](https://img.shields.io/github/stars/lcbkmm/tc-kanrecon.svg)
- Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability
- KAN4TSF: Are KAN and KAN-based models Effective for Time Series Forecasting?
- Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
- FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
- KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems
- GNN-SKAN: Harnessing the Power of SwallowKAN to Advance Molecular Representation Learning with GNNs
- On the expressiveness and spectral bias of KANs - KANs can represent MLPs of similar size. While MLPs can represent KANs, the number of parameters in an MLP increases significantly with KAN grid size. In addition, KANs have a lower spectral bias for low-frequency patterns.
- P1-KAN an effective Kolmogorov Arnold Network for function approximation - lab.org/warin-xavier/)
- CF-KAN: Kolmogorov-Arnold Network-based Collaborative Filtering to Mitigate Catastrophic Forgetting in Recommender Systems - KAN) | ![Github stars](https://img.shields.io/github/stars/jindeok/CF-KAN.svg)
- KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
- Kolmogorov-Arnold Network for Online Reinforcement Learning - PPO) | ![Github stars](https://img.shields.io/github/stars/victorkich/Kolmogorov-PPO.svg)
- A Gated Residual Kolmogorov-Arnold Networks for Mixtures of Experts - code](https://github.com/remigenet/kamoe) | ![Github stars](https://img.shields.io/github/stars/remigenet/kamoe.svg)
- TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling - kanrecon) | ![Github stars](https://img.shields.io/github/stars/lcbkmm/tc-kanrecon.svg)
- Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability
- KAN4TSF: Are KAN and KAN-based models Effective for Time Series Forecasting?
- FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
- A Gated Residual Kolmogorov-Arnold Networks for Mixtures of Experts - code](https://github.com/remigenet/kamoe) | ![Github stars](https://img.shields.io/github/stars/remigenet/kamoe.svg)
- Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks - Meh619/FKAN) | ![Github stars](https://img.shields.io/github/stars/Ali-Meh619/FKAN.svg)
- On the expressiveness and spectral bias of KANs - KANs can represent MLPs of similar size. While MLPs can represent KANs, the number of parameters in an MLP increases significantly with KAN grid size. In addition, KANs have a lower spectral bias for low-frequency patterns.
- P1-KAN an effective Kolmogorov Arnold Network for function approximation - lab.org/warin-xavier/)
- KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems
- Single-Layer Learnable Activation for Implicit Neural Representation (SL2A-INR)
- A Survey on Kolmogorov-Arnold Network
- Kolmogorov-Arnold Network for Online Reinforcement Learning - PPO) | ![Github stars](https://img.shields.io/github/stars/victorkich/Kolmogorov-PPO.svg)
- KAN4TSF: Are KAN and KAN-based models Effective for Time Series Forecasting?
- On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
-
Theorem
- On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables
- On functions of three variables
- On a constructive proof of Kolmogorov’s superposition theorem
- The Kolmogorov-Arnold representation theorem revisited
- The Kolmogorov Superposition Theorem can Break the Curse of Dimension When Approximating High Dimensional Functions
- On functions of three variables
- On a constructive proof of Kolmogorov’s superposition theorem
- The Kolmogorov-Arnold representation theorem revisited
- The Kolmogorov Superposition Theorem can Break the Curse of Dimension When Approximating High Dimensional Functions
- The Kolmogorov Superposition Theorem can Break the Curse of Dimension When Approximating High Dimensional Functions
-
-
Library
-
Theorem
- FourierKAN - linear activation | ![Github stars](https://img.shields.io/github/stars/GistNoesis/FourierKAN.svg)
- Vision-KAN - 5), 80% on ImageNet1000 (training in progress) | ![Github stars](https://img.shields.io/github/stars/chenziwenhaoshuai/Vision-KAN.svg)
- ChebyKAN - Arnold Networks (KAN) using Chebyshev polynomials instead of B-splines. | ![Github stars](https://img.shields.io/github/stars/SynodicMonth/ChebyKAN.svg)
- BSRBF_KAN - Spline (BS) and Radial Basic Function (RBF) in Kolmogorov-Arnold Networks (KANs) | ![Github stars](https://img.shields.io/github/stars/hoangthangta/BSRBF_KAN.svg)
- TaylorKAN - Arnold Networks (KAN) using Taylor series instead of Fourier | ![Github stars](https://img.shields.io/github/stars/Muyuzhierchengse/TaylorKAN.svg)
- pykan
- efficient-kan - PyTorch implementation of Kolmogorov-Arnold Network (KAN). | ![Github stars](https://img.shields.io/github/stars/Blealtan/efficient-kan.svg)
- FastKAN - Arnold Networks (KAN) | ![Github stars](https://img.shields.io/github/stars/ZiyaoLi/fast-kan.svg)
- FasterKAN - kan.svg)
- FourierKAN - linear activation | ![Github stars](https://img.shields.io/github/stars/GistNoesis/FourierKAN.svg)
- Vision-KAN - 5), 80% on ImageNet1000 (training in progress) | ![Github stars](https://img.shields.io/github/stars/chenziwenhaoshuai/Vision-KAN.svg)
- Large Kolmogorov-Arnold Networks - Arnold Networks (including CUDA-supported KAN convolutions) | ![Github stars](https://img.shields.io/github/stars/Indoxer/LKAN.svg)
- xKAN - Arnold Networks with various basis functions like B-Splines, Fourier, Chebyshev, Wavelets etc | ![Github stars](https://img.shields.io/github/stars/mlsquare/xKAN.svg)
- GraphKAN - Graph-Kolmogorov-Arnold-Networks.svg)
- FCN-KAN - KAN.svg)
- X-KANeRF - Splines, Fourier, Radial Basis Functions, Polynomials, etc | ![Github stars](https://img.shields.io/github/stars/lif314/X-KANeRF.svg)
- OrthogPolyKAN - Arnold Networks (KAN) using orthogonal polynomials instead of B-splines. | ![Github stars](https://img.shields.io/github/stars/Boris-73-TA/OrthogPolyKANs.svg)
- Deep-KAN - KAN.svg)
- xKAN - Arnold Networks with various basis functions like B-Splines, Fourier, Chebyshev, Wavelets etc | ![Github stars](https://img.shields.io/github/stars/mlsquare/xKAN.svg)
- GraphKAN - Graph-Kolmogorov-Arnold-Networks.svg)
- FCN-KAN - KAN.svg)
- X-KANeRF - Splines, Fourier, Radial Basis Functions, Polynomials, etc | ![Github stars](https://img.shields.io/github/stars/lif314/X-KANeRF.svg)
- ChebyKAN - Arnold Networks (KAN) using Chebyshev polynomials instead of B-splines. | ![Github stars](https://img.shields.io/github/stars/SynodicMonth/ChebyKAN.svg)
- Large Kolmogorov-Arnold Networks - Arnold Networks (including CUDA-supported KAN convolutions) | ![Github stars](https://img.shields.io/github/stars/Indoxer/LKAN.svg)
- JacobiKAN - Arnold Networks (KAN) using Jacobi polynomials instead of B-splines. | ![Github stars](https://img.shields.io/github/stars/SpaceLearner/JacobiKAN.svg)
- kansformers
- RBF-KAN - KAN is a PyTorch module that implements a Radial Basis Function Kolmogorov-Arnold Network | ![Github stars](https://img.shields.io/github/stars/Sid2690/RBF-KAN.svg)
- JacobiKAN - Arnold Networks (KAN) using Jacobi polynomials instead of B-splines. | ![Github stars](https://img.shields.io/github/stars/SpaceLearner/JacobiKAN.svg)
- Wav-KAN - KAN: Wavelet Kolmogorov-Arnold Networks | ![Github stars](https://img.shields.io/github/stars/zavareh1/Wav-KAN)
- KANX - Arnold Network in JAX | ![Github stars](https://img.shields.io/github/stars/stergiosba/kanx.svg)
- Wav-KAN - KAN: Wavelet Kolmogorov-Arnold Networks | ![Github stars](https://img.shields.io/github/stars/zavareh1/Wav-KAN)
- Initial Investigation of Kolmogorov-Arnold Networks (KANs) as Feature Extractors for IMU Based Human Activity Recognition
- TKAN - Arnold Networks Keras3 layer implementations multibackend (Jax, Tensorflow, Torch) | ![Github stars](https://img.shields.io/github/stars/remigenet/tkan.svg)
- SigKAN - Weighted Kolmogorov-Arnold Networks tensorflow 2.x layer implementations, based on iisignature | ![Github stars](https://img.shields.io/github/stars/remigenet/sigkan.svg)
- fKAN - Arnold Networks with trainable Jacobi basis functions | ![Github stars](https://img.shields.io/github/stars/alirezaafzalaghaei/fKAN.svg)
- TaylorKAN - Arnold Networks (KAN) using Taylor series instead of Fourier | ![Github stars](https://img.shields.io/github/stars/Muyuzhierchengse/TaylorKAN.svg)
- fKAN - Arnold Networks with trainable Jacobi basis functions | ![Github stars](https://img.shields.io/github/stars/alirezaafzalaghaei/fKAN.svg)
- Initial Investigation of Kolmogorov-Arnold Networks (KANs) as Feature Extractors for IMU Based Human Activity Recognition
- FlashKAN - independent computation of Kolmogorov Arnold networks | ![Github stars](https://img.shields.io/github/stars/dinesh110598/FlashKAN.svg)
- rKAN - Arnold Networks | ![Github stars](https://img.shields.io/github/stars/alirezaafzalaghaei/rKAN.svg)
- HiPPO-KAN: Efficient KAN Model for Time Series Analysis
- KAN-SGAN - supervised learning with Generative Adversarial Networks (GANs) using Kolmogorov-Arnold Network Layers (KANLs) | ![Github stars](https://img.shields.io/github/stars/hoangthangta/KAN-SGAN.svg)
- TKAN - Arnold Networks Keras3 layer implementations multibackend (Jax, Tensorflow, Torch) | ![Github stars](https://img.shields.io/github/stars/remigenet/tkan.svg)
- TKAT - Arnold Transformer Tensorflow 2.x model implementation | ![Github stars](https://img.shields.io/github/stars/remigenet/tkat.svg)
- KAN-SGAN - supervised learning with Generative Adversarial Networks (GANs) using Kolmogorov-Arnold Network Layers (KANLs) | ![Github stars](https://img.shields.io/github/stars/hoangthangta/KAN-SGAN.svg)
- HiPPO-KAN: Efficient KAN Model for Time Series Analysis
- FourierKAN - linear activation | ![Github stars](https://img.shields.io/github/stars/GistNoesis/FourierKAN.svg)
- FCN-KAN - KAN.svg)
- FlashKAN - independent computation of Kolmogorov Arnold networks | ![Github stars](https://img.shields.io/github/stars/dinesh110598/FlashKAN.svg)
- BSRBF_KAN - Spline (BS) and Radial Basic Function (RBF) in Kolmogorov-Arnold Networks (KANs) | ![Github stars](https://img.shields.io/github/stars/hoangthangta/BSRBF_KAN.svg)
- TaylorKAN - Arnold Networks (KAN) using Taylor series instead of Fourier | ![Github stars](https://img.shields.io/github/stars/Muyuzhierchengse/TaylorKAN.svg)
- fKAN - Arnold Networks with trainable Jacobi basis functions | ![Github stars](https://img.shields.io/github/stars/alirezaafzalaghaei/fKAN.svg)
- rKAN - Arnold Networks | ![Github stars](https://img.shields.io/github/stars/alirezaafzalaghaei/rKAN.svg)
- KAN-SGAN - supervised learning with Generative Adversarial Networks (GANs) using Kolmogorov-Arnold Network Layers (KANLs) | ![Github stars](https://img.shields.io/github/stars/hoangthangta/KAN-SGAN.svg)
-
Library-based
- Quantum KAN - KAN.svg)
- KAN: Kolmogorov–Arnold Networks in MLX for Apple silicon - Guelmez/mlx-kan.svg)
- TorchKAN
- jaxKAN
- keras_efficient_kan
- efficient-kan-jax - kan | ![Github stars](https://img.shields.io/github/stars/dorjeduck/efficient-kan-jax.svg)
- cuda-Wavelet-KAN - Wavelet-KAN.svg)
-
ConvKANs
- Convolutional-KANs - Arnold Networks (KAN) to the Convolutional Layers, changing the classic linear transformation of the convolution to non linear activations in each pixel. | ![Github stars](https://img.shields.io/github/stars/AntonioTepsich/Convolutional-KANs.svg)
- Torch Conv KAN - Arnold Layers with various basis functions. The repository includes implementations of 1D, 2D, and 3D convolutions with different kernels, ResNet-like, Unet-like, and DenseNet-like models, training code based on accelerate/PyTorch, and scripts for experiments with CIFAR-10/100, Tiny ImageNet and ImageNet1k. Pretrained weights on ImageNet1k are also available | ![Github stars](https://img.shields.io/github/stars/IvanDrokin/torch-conv-kan.svg)
- convkan - in replacement of Conv2d) | ![Github stars](https://img.shields.io/github/stars/StarostinV/convkan.svg)
- ConvKAN3D - kan implementation (importable Python package from PyPi), drop-in replacement of Conv3d.
- KA-Conv - Arnold Convolutional Networks with Various Basis Functions (Optimization for Efficiency and GPU memory usage) | ![Github stars](https://img.shields.io/github/stars/XiangboGaoBarry/KA-Conv.svg)
- KAN-Conv2D - in Convolutional KAN built on multiple implementations ([Original pykan](https://github.com/KindXiaoming/pykan) / [efficient-kan](https://github.com/Blealtan/efficient-kan) / [FastKAN](https://github.com/ZiyaoLi/fast-kan)) to support the original paper hyperparameters. | ![Github stars](https://img.shields.io/github/stars/omarrayyann/KAN-Conv2D.svg)
- CNN-KAN - Arnold Networks | ![Github stars](https://img.shields.io/github/stars/jakariaemon/CNN-KAN.svg)
- Convolutional-KANs - Arnold Networks (KAN) to the Convolutional Layers, changing the classic linear transformation of the convolution to non linear activations in each pixel. | ![Github stars](https://img.shields.io/github/stars/AntonioTepsich/Convolutional-KANs.svg)
- KAN-Conv2D - in Convolutional KAN built on multiple implementations ([Original pykan](https://github.com/KindXiaoming/pykan) / [efficient-kan](https://github.com/Blealtan/efficient-kan) / [FastKAN](https://github.com/ZiyaoLi/fast-kan)) to support the original paper hyperparameters. | ![Github stars](https://img.shields.io/github/stars/omarrayyann/KAN-Conv2D.svg)
- convkan - in replacement of Conv2d) | ![Github stars](https://img.shields.io/github/stars/StarostinV/convkan.svg)
- KA-Conv - Arnold Convolutional Networks with Various Basis Functions (Optimization for Efficiency and GPU memory usage) | ![Github stars](https://img.shields.io/github/stars/XiangboGaoBarry/KA-Conv.svg)
- ConvKAN3D - kan implementation (importable Python package from PyPi), drop-in replacement of Conv3d.
- Torch Conv KAN - Arnold Layers with various basis functions. The repository includes implementations of 1D, 2D, and 3D convolutions with different kernels, ResNet-like, Unet-like, and DenseNet-like models, training code based on accelerate/PyTorch, and scripts for experiments with CIFAR-10/100, Tiny ImageNet and ImageNet1k. Pretrained weights on ImageNet1k are also available | ![Github stars](https://img.shields.io/github/stars/IvanDrokin/torch-conv-kan.svg)
-
Benchmark
- seydi1370/Basis_Functions - based KANs on the MNIST dataset for handwritten digit classification. | ![Github stars](https://img.shields.io/github/stars/seydi1370/Basis_Functions.svg)
- KAN-benchmarking - Master/KAN-benchmarking.svg)
- seydi1370/Basis_Functions - based KANs on the MNIST dataset for handwritten digit classification. | ![Github stars](https://img.shields.io/github/stars/seydi1370/Basis_Functions.svg)
-
Non-Python
- KolmogorovArnold.jl
- KolmogorovArnold.jl
- kan-polar - Arnold Networks in MATLAB | ![Github stars](https://img.shields.io/github/stars/mpoluektov/kan-polar.svg)
- kan-polar - Arnold Networks in MATLAB | ![Github stars](https://img.shields.io/github/stars/mpoluektov/kan-polar.svg)
- FluxKAN.jl
- kamo - Arnold Networks in Mojo | ![Github stars](https://img.shields.io/github/stars/dorjeduck/kamo.svg)
- Julia-Wav-KAN - Arnold Networks. | ![Github stars](https://img.shields.io/github/stars/PritRaj1/Julia-Wav-KAN.svg)
- Building a Kolmogorov-Arnold Neural Network in C
- C# and C++ implementations, benchmarks, tutorials
- kamo - Arnold Networks in Mojo | ![Github stars](https://img.shields.io/github/stars/dorjeduck/kamo.svg)
- Julia-Wav-KAN - Arnold Networks. | ![Github stars](https://img.shields.io/github/stars/PritRaj1/Julia-Wav-KAN.svg)
- Building a Kolmogorov-Arnold Neural Network in C
- Julia-Wav-KAN - Arnold Networks. | ![Github stars](https://img.shields.io/github/stars/PritRaj1/Julia-Wav-KAN.svg)
-
Alternative
- high-order-layers-torch - order-layers-torch.svg)
-
Categories
Sub Categories
Keywords
kolmogorov-arnold-networks
8
computer-vision
4
torch
3
tkan
3
timeseries-forecasting
3
tensorflow2
3
tensorflow
3
temporal-networks
3
temporal
3
keras3
3
keras
3
jax
3
mnist
3
machine-learning
2
convolutional-neural-networks
2
deep-learning
2
cnn
2
semi-supervised-learning
2
generative-adversarial-network
2
fashion-mnist
2
bsrbf-kan
2
radial-basis-function
1
kans
1
fast-kan
1
efficientkan
1
b-splines
1
spline
1
sparse-network
1
pytorch-lightning
1
pytorch
1
piecewise-polynomial
1
lagrange-polynomial-interpolation
1
implicit-representions
1
hp-refinement
1
high-order-methods
1
grid
1
fourier-series
1
fluid-dynamics
1
discontinuous
1
deeplearning
1
chebyshev-polynomials
1
transformer
1
tkat
1
timeseries
1
time-series
1
signature
1
rough-paths
1