Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/omarrayyann/KAN-Conv2D
Drop-in convolutional KAN replacement of Conv2d
https://github.com/omarrayyann/KAN-Conv2D
Last synced: about 1 month ago
JSON representation
Drop-in convolutional KAN replacement of Conv2d
- Host: GitHub
- URL: https://github.com/omarrayyann/KAN-Conv2D
- Owner: omarrayyann
- License: apache-2.0
- Created: 2024-05-20T00:50:12.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-05-22T07:04:36.000Z (8 months ago)
- Last Synced: 2024-05-23T02:16:43.151Z (8 months ago)
- Language: Python
- Size: 153 KB
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-kan - KAN-Conv2D - in Convolutional KAN built on multiple implementations ([Original pykan](https://github.com/KindXiaoming/pykan) / [efficient-kan](https://github.com/Blealtan/efficient-kan) / [FastKAN](https://github.com/ZiyaoLi/fast-kan)) to support the original paper hyperparameters. | ![Github stars](https://img.shields.io/github/stars/omarrayyann/KAN-Conv2D.svg) (Library / ConvKANs)
- awesome-kan - KAN-Conv2D - in Convolutional KAN built on multiple implementations ([Original pykan](https://github.com/KindXiaoming/pykan) / [efficient-kan](https://github.com/Blealtan/efficient-kan) / [FastKAN](https://github.com/ZiyaoLi/fast-kan)) to support the original paper hyperparameters. | ![Github stars](https://img.shields.io/github/stars/omarrayyann/KAN-Conv2D.svg) (Library / ConvKANs)
README
# Convolutional 2D KAN Implementation
This repositry contains 3 drop-in convolutional KAN replacements. Each work on top of a different KAN implementation:
1. [Efficient implementation of Kolmogorov-Arnold Network (KAN)](https://github.com/Blealtan/efficient-kan)
2. [Original KAN implementation](https://github.com/KindXiaoming/pykan)
3. [Fast KAN implementation](https://github.com/ZiyaoLi/fast-kan)# Installation
```bash
git clone [email protected]/omarrayyann/KAN-Conv2D
cd KAN-Conv2D
pip install -r requirements.txt
```# Usage
You should be able to just replace ```torch.nn.Conv2D()``` with ```ConvKAN()```
```python3
from ConvKAN import ConvKAN
# Implementation built on the efficient KAN Implementation (https://github.com/Blealtan/efficient-kan)
conv = ConvKAN(in_channels=3, out_channels=4, kernel_size=3, stride=1, padding=1, version="Efficient")# Implementation built on the original KAN Implementation (https://github.com/KindXiaoming/pykan)
conv = ConvKAN(in_channels=3, out_channels=4, kernel_size=3, stride=1, padding=1, version="Original")# Implementation built on the fast KAN Implementation (https://github.com/ZiyaoLi/fast-kan)
conv = ConvKAN(in_channels=3, out_channels=4, kernel_size=3, stride=1, padding=1, version="Fast")```