Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/omarrayyann/KAN-Conv2D

Drop-in convolutional KAN replacement of Conv2d
https://github.com/omarrayyann/KAN-Conv2D

Last synced: about 1 month ago
JSON representation

Drop-in convolutional KAN replacement of Conv2d

Awesome Lists containing this project

README

        

# Convolutional 2D KAN Implementation

This repositry contains 3 drop-in convolutional KAN replacements. Each work on top of a different KAN implementation:

1. [Efficient implementation of Kolmogorov-Arnold Network (KAN)](https://github.com/Blealtan/efficient-kan)
2. [Original KAN implementation](https://github.com/KindXiaoming/pykan)
3. [Fast KAN implementation](https://github.com/ZiyaoLi/fast-kan)

# Installation
```bash
git clone [email protected]/omarrayyann/KAN-Conv2D
cd KAN-Conv2D
pip install -r requirements.txt
```

# Usage

You should be able to just replace ```torch.nn.Conv2D()``` with ```ConvKAN()```

```python3

from ConvKAN import ConvKAN

# Implementation built on the efficient KAN Implementation (https://github.com/Blealtan/efficient-kan)
conv = ConvKAN(in_channels=3, out_channels=4, kernel_size=3, stride=1, padding=1, version="Efficient")

# Implementation built on the original KAN Implementation (https://github.com/KindXiaoming/pykan)
conv = ConvKAN(in_channels=3, out_channels=4, kernel_size=3, stride=1, padding=1, version="Original")

# Implementation built on the fast KAN Implementation (https://github.com/ZiyaoLi/fast-kan)
conv = ConvKAN(in_channels=3, out_channels=4, kernel_size=3, stride=1, padding=1, version="Fast")

```