Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Ironbrotherstyle/UnVIO

The source code of IJCAI2020 paper "Unsupervised Monocular Visual-inertial Odometry Network".
https://github.com/Ironbrotherstyle/UnVIO

Last synced: 3 months ago
JSON representation

The source code of IJCAI2020 paper "Unsupervised Monocular Visual-inertial Odometry Network".

Awesome Lists containing this project

README

        

# Unsupervised Network for Visual Inertial Odometry
IJCAI2020 paper: Unsupervised Network for Visual Inertial Odometry.

| KITTI 09 | KITTI 10 |
| ------------- | ------------- |
| ![aa](./imgs/kitti_09_final.gif) | ![bb](./imgs/kitti_10_final.gif) |

## Introduction
This repository is the official [Pytorch](https://pytorch.org/) implementation of IJCAI2020 paper [Unsupervised Network for Visual Inertial Odometry](https://robotics.pkusz.edu.cn/static/papers/IJCAI-weipeng.pdf).

## Installation

UnVIO has been tested on Ubuntu with Pytorch 1.4 and Python 3.7.10. For installation, it is recommended to use conda environment.

```shell
conda create -n unvio_env python=3.7.10
conda activate unvio_env
pip install -r requirements.txt
```

Other applications should be installed also,
```shell
sudo apt install gnuplot
```

## Data Preparing

The datasets used in this paper are [KITTI raw](http://www.cvlibs.net/datasets/kitti/raw_data.php) ataset
and [Malaga](https://www.mrpt.org/MalagaUrbanDataset) dataset. Please refer to [Data preparing](DATA.md) for detailed
instruction.

## Validation

Validation can be implemented on Depth estimation and Odometry estimation.
First specify the model path and dataset path:

```shell
ROOT='MODEL_ROOT_HERE'
DATA_ROOT='DATA_ROOT_HERE'
```

### Depth Estimation

For Depth estimation on KITTI 09 (if you want to test on KITTI 10, change the
`--dataset-list` to `.eval/kitti_10.txt`, same set for Malaga dataset), run the following command:

```shell
ROOT=$ROOT/kitti_ckpt
#ROOT=$ROOT/malaga_ckpt
DATA_ROOT=$DATA_ROOT/KITTI_rec_256/
#DATA_ROOT=$DATA_ROOT/Malaga_down/
```

```shell
python test_disp.py \
--pretrained-dispnet $ROOT/UnVIO_dispnet.pth.tar \
--dataset-dir $DATA_ROOT \
--dataset-list .eval/kitti_09.txt \
--output-dir $ROOT/results_disp \
--save-depth
```

The `predictions.npy` that stores the all the depth values will be saved in `$ROOT/results_disp`, if `--save-depth` is added, the colored depths will be saved simultaneously is `$ROOT/results_disp/disp`

### Visual Odometry

For Odometry estimation KITTI 09 (if you want to test on KITTI 10, change the `testscene` to `2011_09_30_drive_0034_sync_02`), run the following command:

```shell
ROOT=$ROOT/kitti_ckpt
DATA_ROOT=$DATA_ROOT
```

```shell
python test_pose.py \
--pretrained-visualnet $ROOT/UnVIO_visualnet.pth.tar \
--pretrained-imunet $ROOT/UnVIO_imunet.pth.tar\
--pretrained-posenet $ROOT/UnVIO_posenet.pth.tar\
--dataset_root $DATA_ROOT \
--dataset KITTI \
--testscene 2011_09_30_drive_0033_sync_02 \
--show-traj
```

This will create a `.csv` file represneting $T_{wc} \in \mathbb{R}^{3 \times 4}$ in `$ROOT` directory. If the `--show-traj` is added, a scaled trajectory comparing with the ground truth will be ploted.

## Train

Run the following command to train the UnVIO from scratch:

```shell
DATA_ROOT=$DATA_ROOT
```

```shell
python train.py --dataset_root $DATA_ROOT --dataset KITTI
```

specify `--dataset (KITTI or Malaga)` as you need.

## Citation

```
@inproceedings{2020Unsupervised,
title={Unsupervised Monocular Visual-inertial Odometry Network},
author={ Wei, P. and Hua, G. and Huang, W. and Meng, F. and Liu, H. },
booktitle={Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}},
year={2020},
}
```

## License

This project is licensed under the terms of the MIT license.

## References

The repository borrowed some code from [SC](https://github.com/JiawangBian/SC-SfMLearner-Release), [Monodepth2](https://github.com/nianticlabs/monodepth2.git) and [SfMLearner](https://github.com/ClementPinard/SfmLearner-Pytorch), thanks for their great work.