Awesome-SLAM
A curated list of SLAM resources
https://github.com/SilenceOverflow/Awesome-SLAM
Last synced: 5 days ago
JSON representation
-
6. Mobile End SLAM
-
6.3 Augmented Reality
- Awesome-ARKit
- Awesome-ARCore
- MixedRealityToolkit-Unity
- arcore-android-sdk
- OpenARK
- opencv-markerless-AR-Mobile
- DepthAPISampleForiOS11
- AVDepthCamera
- ios11-depth-map-test
- ARCore Depth Lab
- AR-Depth - Aware Augmented Reality
- AR-Depth-cpp - aware Augmented Reality (SIGGRAPH-Asia 2018)
-
6.4 Others
- GPUImage - based image and video processing
- Microsoft Computer Vision API
-
6.1 Visual SLAM
-
6.2 Visual Inertial SLAM
- VINS-Mobile - Inertial State Estimator on Mobile Phones
-
-
8. Tutorials
-
6.4 Others
-
8.1 3D Vision
-
8.3 Lie Algebra and Lie Groups
- Lie groups for Computer Vision
- Lie groups for 2D and 3D Transformations
- Hermite Splines in Lie Groups as Products of Geodesics
- LieTransformer
- Sophus
- manif - only library for Lie theory
- Lie groups for Computer Vision
- Lie groups for 2D and 3D Transformations
- Hermite Splines in Lie Groups as Products of Geodesics
-
8.4 Optimization Techniques
- Gauss-Newton/Levenberg-Marquardt Optimization
- How a Kalman filter works, in pictures
- 卡爾曼濾波 (Kalman Filter)
- 翻譯 Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation
- ceres-solver - linear optimization library
- g2o
- GTSAM
- miniSAM - linear least square optimization framework
- AprilSAM - time Smoothing and Mapping
- GTSAM Tutorial Examples
- AMGCL
- Armadillo
- IFOPT - based, light-weight C++ Interface to Nonlinear Programming Solvers (Ipopt, Snopt)
- LBFGS++ - only C++ library for L-BFGS and L-BFGS-B algorithms
- OptimLib
- fpm - only fixed-point math library
- Gauss-Newton/Levenberg-Marquardt Optimization
- How a Kalman filter works, in pictures
- 卡爾曼濾波 (Kalman Filter)
- 翻譯 Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation
- PoseLib
- 卡爾曼濾波 (Kalman Filter)
- 翻譯 Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation
-
8.5 Calibration
- kalibr - inertial calibration toolbox
- Accurate geometric camera calibration with generic camera models
- LI-Calib - IMU System Based on Continuous-time Batch Estimation
- Online Photometric Calibration
- IMU-TK
- crisp - to-IMU calibration and synchronization toolbox
- VersaVIS - Camera Visual-Inertial Sensor Suite
-
8.6 RANSAC
- RansacLib - based implementation of RANSAC and its variants in C++
-
8.2 Robotics
- RoboticSystemsBook
- MATLABRobotics
- Kindr
- Sensor Fusion in ROS - depth step-by-step tutorial for implementing sensor fusion with robot_localization
- fuse
- GPU Computing in Robotics
-
-
9. Selected Blogs
-
11. Community
-
8.6 RANSAC
-
-
Stay Tuned for Constant Updates
- Youjie Xia - friendly tutorials.
- **Awesome-SLAM-Papers**
- **Awesome-SLAM-Papers**
-
1. Hot SLAM Repos on GitHub
- SLAM: learning SLAM,curse,paper and others
- VIO-Resources
- awesome-slam: A curated list of awesome SLAM tutorials, projects and communities.
- A list of current SLAM (Simultaneous Localization and Mapping) / VO (Visual Odometry) algorithms
- awesome-visual-slam: The list of vision-based SLAM / Visual Odometry open source, blogs, and papers
- awesome-SLAM-list
- Awesome-SLAM: Resources and Resource Collections of SLAM
-
2. Visual SLAM
-
2.1 Framework
-
2.3 Stereo
- stereo-dso: Direct Sparse Odometry with Stereo Cameras
- ORB_SLAM2
- ORBSLAM2_with_pointcloud_map
- PL-SLAM: a Stereo SLAM System through the Combination of Points and Line Segments
- StVO-PL: Stereo Visual Odometry by combining point and line segment features
- PL-SVO
- stereo-dso: Direct Sparse Odometry with Stereo Cameras
- S-PTAM: Stereo Parallel Tracking and Mapping
- Robust Stereo Visual Odometry
- OV²SLAM: A Fully Online and Versatile Visual SLAM for Real-Time Applications
-
2.2 Monocular
- ORB_SLAM: A Versatile and Accurate Monocular SLAM
- LSD-SLAM: Large-Scale Direct Monocular SLAM
- DSO: Direct Sparse Odometry
- LDSO: Direct Sparse Odometry with Loop Closure
- SVO: Semi-direct Visual Odometry
- PTAM: Parallel Tracking and Mapping
- LPVO: Line and Plane based Visual Odometry
- LCSD_SLAM: Loosely-Coupled Semi-Direct Monocular SLAM
- CCM-SLAM: Robust and Efficient Centralized Collaborative Monocular SLAM for Robotic Teams
-
2.4 RGBD
- Dense Visual Odometry and SLAM
- DVO
- PlanarSLAM
- badslam - D SLAM
- RESLAM - time robust edge-based SLAM system
- VDO-SLAM - aware SLAM System
- REVO - based Visual Odometry
-
2.5 Others
- CubeSLAM
- se2lam - Odometric On-SE(2) Localization and Mapping
- se2clam - Constrained Localization and Mapping by Fusing Odometry and Vision
- BreezySLAM - source package for Simultaneous Localization and Mapping in Python, Matlab, Java, and C++
- MultiCol-SLAM - fisheye camera SLAM
- Event-based Stereo Visual Odometry
-
-
3. Visual Inertial SLAM
-
3.3 Stereo
- LearnVIORBnorosgai2 - SLAM2 (Non-ROS Version)
- msckf_vio
- OKVIS - based Visual-Inertial SLAM
- Basalt - Inertial Mapping with Non-Linear Factor Recovery
- ICE-BA - Inertial SLAM
- ORBSLAM_DWO
- VI-Stereo-DSO
- Semi-Dense Direct Visual Inertial Odometry
- LearnVIORBnorosgai2 - SLAM2 (Non-ROS Version)
- ygz-stereo-inertial - inertial visual odometry
-
3.1 Framework
- maplab - inertial mapping framework.
- ORB-SLAM3 - Source Library for Visual, Visual-Inertial and Multi-Map SLAM
- VINS-Fusion - based multi-sensor state estimator
- Kimera - source library for real-time metric-semantic localization and mapping
- OpenVINS - inertial navigation research
-
3.2 Monocular
- OKVIS - based Visual-Inertial SLAM (ROS Version)
- ROVIO
- R-VIO - Inertial Odometry
- LARVIO - State Constraint Kalman Filter
- msckf_mono
- (ROS Version) - ROS Version)](https://github.com/OpenSLAM/LearnViORB_NOROS/tree/master/master/LearnVIORB_NOROS)
- PVIO - Inertial Odometry with Multi-plane Priors
- PL-VIO
- PL-VINS - Time Monocular Visual-Inertial SLAM with Point and Line Features
- Adaptive Line and Point Feature-based Visual Inertial Odometry for Robust Localization in Indoor Environments
- REBiVO
- Co-VINS - Inertial Systems
-
3.5 Others
-
-
5. Learning based SLAM
-
5.2 Others
- Epipolar Transformers
- TLIO
- Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
- SuperPoint + ORB_SLAM2
- VINet - Inertial Odometry as a Sequence-to-Sequence Learning Problem
- DeepSFM
- Unsupervised Monocular Visual-inertial Odometry Network
- Semantic SLAM
- CNN-DSO
- CNN-SVO
- KFNet
- Unsupervised Depth Completion from Visual Inertial Odometry
- The Perfect Match
- Beyond Photometric Loss for Self-Supervised Ego-Motion Estimation
- M^3SNet - metric Multi-view Stereo Network
- Deep EKF VIO
- Active Neural SLAM
- DeepFactors
- OverlapNet - based SLAM
- SO-Net - Organizing Network for Point Cloud Analysis
- Geometry-Aware Learning of Maps for Camera Localization
- DeepV2D
- PVN3D - wise 3D Keypoints Voting Network for 6DoF Pose Estimation
- DeepMVS - View Stereopsis
- Epipolar Transformers
- DF-VO
- DeepTAM
-
5.1 Survey
-
5.3 Deep Features
- GCNv2 SLAM - time SLAM system with deep features
- FCGF
- Deep Image Retrieval
- Key.Net
-
5.4 Semantic SLAM
- SuMa++ - based Semantic SLAM
- DS-SLAM
- Probabilistic Data Association via Mixture Models for Robust Semantic SLAM
- SIVO
- orbslam_semantic_nav_ros, RGBD
- Pop-up SLAM - texture Environments
- Semantic SLAM using ROS, ORB SLAM, PSPNet101
-
-
7. Datasets
-
6.4 Others
- TUM - Monocular Visual Odometry Dataset - vision/mono_dataset_code)]
- Awesome SLAM Datasets
- Awesome Robotics Datasets
- ADVIO - Inertial Odometry
- Awesome Robotics Datasets
-
-
4. LIDAR based SLAM
-
4.1 Framework
- Cartographer
- LOAM-Livox - LiDAR
-
4.2 Others
- FAST-LIO
- LOL - only Odometry and Localization in 3D point cloud maps
- ISCLOAM
- PyICP SLAM - python LiDAR SLAM using ICP and Scan Context
- LIO-SAM - coupled Lidar Inertial Odometry via Smoothing and Mapping
- LeGO-LOAM - Optimized Lidar Odometry and Mapping on Variable Terrain
- hdl_graph_slam - based Graph SLAM
- A-LOAM
- LIO-mapping: A Tightly Coupled 3D Lidar and Inertial Odometry and Mapping Approach
- SC-LeGO-LOAM - LOAM
- MULLS - metric Linear Least Square
- Fast LOAM
- SuMa - based Mapping using 3D Laser Range Data
- LINS - inertial-SLAM
-
Programming Languages
Categories
Sub Categories
5.2 Others
27
8.4 Optimization Techniques
23
4.2 Others
14
6.4 Others
12
6.3 Augmented Reality
12
3.2 Monocular
12
3.3 Stereo
10
2.3 Stereo
10
8.3 Lie Algebra and Lie Groups
9
2.2 Monocular
9
8.6 RANSAC
8
8.5 Calibration
7
2.4 RGBD
7
8.1 3D Vision
7
5.4 Semantic SLAM
7
2.5 Others
6
8.2 Robotics
6
3.1 Framework
5
2.1 Framework
5
6.1 Visual SLAM
4
5.3 Deep Features
4
5.1 Survey
2
4.1 Framework
2
3.5 Others
1
6.2 Visual Inertial SLAM
1
Keywords
slam
32
robotics
16
computer-vision
10
localization
10
deep-learning
9
ros
8
depth-estimation
6
lidar
6
visual-inertial-odometry
6
visual-slam
5
3d-reconstruction
5
3d
5
visual-odometry
5
cpp
5
c-plus-plus
5
vio
5
mapping
5
loam
5
sensor-fusion
4
velodyne
4
state-estimation
4
point-cloud
4
optimization
4
sensor-calibration
3
lidar-odometry
3
odometry
3
autonomous-driving
3
msckf
3
graph-optimization
3
g2o
3
opencv
3
augmented-reality
3
3d-vision
3
bundle-adjustment
3
ucla
2
icp
2
robot
2
matlab
2
ekf-localization
2
vins
2
kalman-filtering
2
orb-slam2
2
icra2019
2
tensorflow
2
3d-lidar
2
mobile
2
arcore
2
android
2
imu
2
iros
2