Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/youngguncho/awesome-slam-datasets

A curated list of awesome datasets for SLAM
https://github.com/youngguncho/awesome-slam-datasets

List: awesome-slam-datasets

Last synced: 9 days ago
JSON representation

A curated list of awesome datasets for SLAM

Awesome Lists containing this project

README

        

# Awesome SLAM Datasets [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)

![image](figs/awesome_datasets_thumbnails.png)
>Thumbnail Figures from Complex Urban, NCLT, Oxford robotcar, KiTTi, Cityscapes datasets.

This repository is the collection of SLAM-related datasets. Among various SLAM datasets, we've selected the datasets provide pose and map information. This repository is linked to the [google site](https://sites.google.com/view/awesome-slam-datasets/). In this repository, the overall dataset chart is represented as simplified version. You can use full version of the chart (made by google spreadsheet) in the [project page](https://sites.google.com/view/awesome-slam-datasets/).

We provide several category for each access of the data.

## News !!
## Update: 2023-06-20
- Add 4Seasons
- Add M2DGR
- Add Tartanair


## Update: 2022-8-15
- Add VECtor Dataset

## Update: 2022-04-07
- Add Hilti SLAM Dataset

## Update: 2021-03-24
- Add PennCosyVIO

### Update: 2021-02-26
- We add a new visual localization and mapping dataset named "ICL Dataset".
- Added OpenVINS evaulation toolbox link.

### Update: 2020-02-29
- We updated SLAMBench from version 2.0 to 3.0.

### Update: 2019-09-24
- We add [FMDataset](https://github.com/zhuzunjie17/FastFusion) which consist on RGBD and IMU data for dense reconstruction of indoor environments
- In ICRA 2019 (Montreal), workshop on ['Dataset Generation and Benchmarking of SLAM Algorithms for Robotics and VR/AR'](https://sites.google.com/view/icra-2019-workshop/home) will be held!. We are pretty sure that there will be many 'new' and 'hot' datasets intruduced at the workshop.
- We add [evaluation section](#evaluation) (Tools for trajectory and SLAM methods evaluation)
- We add a new UAV dataset, [UZH-FPV Drone Racing Dataset](http://rpg.ifi.uzh.ch/uzh-fpv.html), which aims high speed state estimation using RGB, Event, and IMU.
- [Complex Urban Dataset (KAIST)](https://sites.google.com/view/complex-urban-dataset) now includes stereo camera images! (published in IJRR 2019)

## TODO
- Add datasets introduced in CVPR 2019
- Waymo (https://waymo.com/open)
- Nuscenes (https://www.nuscenes.org/)
- ...
- Add Simulation datast category
- CARLA
- Airsim
- Syncity

## Category
- [Evaluation](#evaluation)
- Evaluation Methods of SLAM
- [Topic](#categorized-by-topic)
- [Odometry](#odometry): Dataset for odometry Benchmark
- [Mapping](#mapping): Dataset for mapping task
- [Place Recognition](#place-recognition): Dataset gives correspondences of places (images)
- [Localization](#localization): Dataset for metric-level localization
- [Perception](#perception): Dataset with semantic labels / correspondences

- [Characteristics](#categorized-by-characteristics)
- [Large-scale](#large-scale): City-scale map, kilometer level Map
- [Long-term](#long-term): Multi-session, long-term data collection
- [Map Complexity](#map-complexity): Variation of mapping structures
- [Extreme Condition](#extreme-condition): Extreme environment, motions

- [Platform](#categorized-by-platform)
- [Vehicle (Veh)](#vehicle): Commercial Vehicle (Four-wheeled on the road)
- [Mobile robot (Mob)](#mobile-robot): Mobile Robots (Ex. Husky, Rover.. )
- [Unmanned Aerial Vehicle (UAV)](#unmanned-aerial-vehicle): Unmanned aerial robots include drone.
- [Autonomous Underwater Vehicle (AUV)](#autonomous-underwater-vehicle): Underwater robots include ROV for simplicity.
- [Unmanned Surface Vehicle (USV)](#unmanned-surface-vehicle): Water surface vehicle such as canoe and boat.
- [Hand-held Device (Hand)](#hand-held-device): Hand-held platform by human

- [Environment](#categorized-by-platform)
- [Urban](#urban): City, campus, town, and infrastructures
- [Indoor](#indoor): Indoor environment
- [Terrain](#terrain): Forest, Rough terrain, underground, lake and farm
- [Underwater](#underwater): Underwater floor, cave
- [Simulation](#simulation): Simulation Scene

## Overall datasets chart (Simplified Version)
[Link to Full version](https://sites.google.com/view/awesome-slam-datasets/)

| Shortname | Affiliation | Year | Platform | Publication | Environment | GT-Pose | GT-Map | IMU | GPS | Labels | Lidar | Cameras | RGBD | Event | Radar | Sonar | DVL | Other |
|----------------------------------------------------------------------------------------------------------|--------------|------|------------|-------------|-----------------------|---------|--------|-----|-----|--------|------------|---------|------|-------|-------|-------|-----|-------------------------|
| [4Seasons Dataset](https://www.4seasons-dataset.com/) | Technical University of Munich| 2020 | Veh | GCPR | Outdoor | O | O | O | O | | O | O | O | O | | | |
| [M2DGR](https://star-datasets.github.io/vector/) | Shanghai Jiaotong University | 2021 | Mob | RA-L | Indoor + Outdoor | O | | O | O | | O | O | O | O | | | |
| [TartanAir](https://theairlab.org/tartanair-dataset/) | CMU | 2020 | UAV | IROS | Simulation | O | O | O | | | | O | | O | | | | |
| [VECtor Dataset](https://star-datasets.github.io/vector/) | ShanghaiTech University | 2022 | Hand | RA-L | Indoor + Outdoor | O | | O | | | O | O | O | O | | | | |
| [Hilti SLAM Dataset](https://hilti-challenge.com/) | Hilti, Oxford, UZH | 2022 | Hand | | Indoor + Outdoor | O | O | O | | | O | O | | | | | | |
| [MADMAX Mars Dataset](https://rmc.dlr.de/morocco2018/) | German Aerospace Center (DLR) | 2021 | Handheld Rover-Mockup | JFR | Rough Terrain, Planetary analog | O | | O | O | | | O | O | | | | | Stereo Cams + Stereo Omnidirectional Cameras; Navigation Benchmark |
| [FinnForest Dataset](http://urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d) | Tampere University | 2020 | Veh | RAS journal | Forest, Terrain | O | | | | | | O | | | | | | Multiple Stereo Pairs ; Sampling Rate(40, 13, and 8Hz) |
| [PennCOSYVIO Dataset](https://daniilidis-group.github.io/penncosyvio/) | University of Pennsylvania | 2017 | Hand | ICRA | Indoor + Outdoor | O | | O | | | | O | | | | | | |
| [ICL Dataset](https://peringlab.org/lmdata/) | Imperial College | 2019 | Hand, MAV | ICRA | Indoor | O | | | | | | O | O | | | | | |
| [UZH-FPV Drone Racing](http://rpg.ifi.uzh.ch/uzh-fpv.html) | UZH, ETH | 2019 | UAV | ICRA | Indoor, Urban | O | | O | | | | O | | O | | | | |
| [FMDataset](https://github.com/zhuzunjie17/FastFusion) | Hangzhou Dianzi / Tsinghua | 2019 | Hand | ICME | Indoor | | | O | | | | | O | | | | | |
| [Rosario Dataset](http://www.cifasis-conicet.gov.ar/robot/doku.php) | CONICET-UNR | 2019 | Mob | IJRR | Terrain | O | | O | | | | O | | | | | | Encoder |
| [Collaborative SLAM Dataset (CSD)](https://github.com/torrvision/CollaborativeSLAMDataset) | Oxford | 2018 | Hand | TVCG/ISMAR | Indoor | O | O | O | | | | O | O | | | | | Tango (Asus ZenFone AR)
| [ADVIO Dataset](https://github.com/AaltoVision/ADVIO) | Aalto U | 2018 | Hand | ECCV | Urban | O | O | O | | | | O | | | | | | iPhone, Tango, Pixel |
| [DeepIO Dataset](http://deepio.cs.ox.ac.uk/) | Oxford | 2018 | Hand | Arxiv | Indoor | O | | O | | | | | | | | | | |
| [Aqualoc Dataset](http://www.lirmm.fr/aqualoc/) | ONERA-DTIS | 2018 | ROV | IROS WS | Underwater | O | | O | | | | O | | | | | | Pressure Sensor |
| [InteriorNet](https://interiornet.org/) | Imperial College | 2018 | Hand | BMVC | Indoor | O | O | O | | O | | O | O | O | | | | Texture, Lighting, Context, Optical Flow |
| [SPO Dataset](https://www.hs-karlsruhe.de/odometry-data/) | TUM, Karlsruhe | 2018 | Hand | Arxiv | Urban | O | | | | | | O | | | | | | Plenoptic Camera |
| [Complex Urban](https://sites.google.com/view/complex-urban-dataset) | KAIST-IRAP | 2018 | Veh | ICRA | Urban | O | O | O | O | | O | | | | | | | Encoder |
| [KAIST Day/Night](https://sites.google.com/view/multispectral/home) | KAIST-RCV | 2018 | Veh | T-ITS | Urban | O | | O | O | O | O | O | | | | | | Thermal Camera |
| [TUM-Visual-Inertial](https://vision.in.tum.de/data/datasets/visual-inertial-dataset) | TUM | 2018 | Hand | Arxiv | Indoor, Urban | | | O | | | | | O | | O | | | |
| [Multi Vech Event](https://daniilidis-group.github.io/mvsec/) | Upenn | 2018 | Veh | RA-L | Urban | O | | O | O | | O | O | | O | | | | |
| [VI Canoe](https://databank.illinois.edu/datasets/IDB-9342111) | UIUC | 2018 | USV | IJRR | Terrain | O | | O | O | | | O | | | | | | |
| [MPO-Japan](https://robotics.ait.kyushu-u.ac.jp/en/archives/research/db) | ETH-RPG | 2017 | UAV / Hand | IJRR | Indoor | O | | O | | | | O | | O | | | | |
| [Underwater Cave](http://cirs.udg.edu/caves-dataset/) | UDG | 2017 | AUV | IJRR | Underwater | O | | O | | | | O | | | | O | O | Profiling Sonar |
| [Robot @ Home](http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/203-robot-at-home-dataset) | MRPT | 2017 | Mob | IJRR | Indoor | O | O | | | O | O | | O | | | | | Semantic Labels |
| [Zurich Urban MAV](http://rpg.ifi.uzh.ch/zurichmavdataset.html) | ETH-RPG | 2017 | UAV | IJRR | Urban | O | | O | O | | | O | | | | | | Streetview images |
| [Chilean Underground](http://dataset.amtc.cl/#) | Trimble | 2017 | Mob | IJRR | Terrain (Underground) | O | | | | | O | O | | | O | | | Encoder |
| [SceneNet RGB-D](https://robotvault.bitbucket.io/scenenet-rgbd.html) | Imperial | 2017 | Hand | ICCV | Indoor | O | | | | O | | | O | | | | | |
| [Symphony Lake](http://dream.georgiatech-metz.fr/?q=node/79) | Georgia Tech | 2017 | USV | IJRR | Terrain (Lake) | | | O | O | | O | O | | | | | | PTZ camera, Longterm |
| [Agricultural robot](http://www.ipb.uni-bonn.de/data/sugarbeets2016/) | Bonn | 2017 | Mob | IJRR | Terrain | O | | | O | O | O | O | O | | | | | Multispectral camera |
| [Beach Rover](https://robotics.estec.esa.int/datasets/katwijk-beach-11-2015/) | TEC-MMA | 2017 | Mob | | Terrain | O | | O | O | | O | O | O | | | | | Encoder |
| [EuRoC](http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) | ETH-ASL | 2016 | UAV | IJRR | Indoor | O | O | O | | | | O | | | | | | |
| [Cartographer](https://google-cartographer-ros.readthedocs.io/en/latest/data.html) | Google | 2016 | Hand | ICRA | Indoor | | | O | | | O | O | | | | | | |
| [TUM-Mono](https://vision.in.tum.de/data/datasets/mono-dataset) | TUM | 2016 | Hand | Arxiv | Indoor, Urban | | | | | | | | | | O | | | Photometric Calibration |
| [Cityscape](https://www.cityscapes-dataset.com/) | Daimler AG | 2016 | Veh | CVPR | Urban | O | | | O | O | | O | | | | | | |
| [Solar-UAV](http://projects.asl.ethz.ch/datasets/doku.php?id=fsr2015) | ETHZ | 2016 | UAV | CVPR | Terrain | O | O | O | O | | O | | | | | | | |
| [CoRBS](http://corbs.dfki.uni-kl.de/?pagerd_tumlltzzf42zsv6de7b9) | DFKI | 2016 | Hand | WACV | Indoor | O | O | | | | | | O | | | | | |
| [Oxford-robotcar](http://robotcar-dataset.robots.ox.ac.uk) | Oxford | 2016 | Veh | IJRR | Urban | O | | O | O | | O | O | | | | | | |
| [NCLT](http://robots.engin.umich.edu/nclt/) | UMich | 2016 | Mob | IJRR | Urban | O | | O | O | | O | | | | | | | FOG |
| [RPG-event](http://rpg.ifi.uzh.ch/davis_data.html) | Kyushu U | 2016 | Veh | IROS | Urban, Terrain | | | O | O | | O | O | | | | | | FARO 3D |
| [CCSAD](http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset) | CIMAT | 2015 | Veh | CAIP | Urban | | | O | O | | | O | | | | | | |
| [TUM-Omni](https://vision.in.tum.de/data/datasets/omni-lsdslam) | TUM | 2015 | Hand | IROS | Indoor, Urban | | | | | | | O | | | | | | |
| [Augmented ICL-NUIM](http://redwood-data.org/indoor/index.html) | Redwood | 2015 | Hand | CVPR | Indoor | O | O | | | | | | O | | | | | |
| [Cambridge Landmark](http://mi.eng.cam.ac.uk/projects/relocalisation/) | Cambridge | 2015 | Hand | ICCV | Urban | O | O | | | | | O | | | | | | |
| [ICL-NUIM](https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html) | Imperial | 2014 | Hand | ICRA | Indoor | O | O | | | | | | O | | | | | |
| [MRPT-Malaga](https://www.mrpt.org/robotics_datasets) | MRPT | 2014 | Veh | AR | Urban | | | O | O | | O | O | | | | | | |
| [KITTI](http://www.cvlibs.net/datasets/kitti/index.php) | KIT | 2013 | Veh | IJRR | Urban | O | | O | O | O | O | O | | | | | | |
| [Canadian Planetary](http://asrl.utias.utoronto.ca/datasets/3dmap/#Datasets) | UToronto | 2013 | Mob | IJRR | Terrain | O | | O | O | | O (sensor) | O | | | | | | |
| [Microsoft 7 scenes](https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/) | Microsoft | 2013 | Hand | CVPR | Indoor | O | O | | | | | O | | | | | | |
| [SeqSLAM](https://ieeexplore.ieee.org/document/6224623) | QUT | 2012 | Veh | ICRA | Urban | | | | | O | | O | | | | | | |
| [ETH-challenging](http://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:laserregistration) | ETH-ASL | 2012 | Hand | IJRR | Urban, Terrain | | | O | O | | O | O | O | | | | | |
| [TUM-RGBD](https://vision.in.tum.de/data/datasets/rgbd-dataset) | TUM | 2012 | Hand / Mob | IROS | Indoor | O | | O | | | | | O | | | | | |
| [ASRL-Kagara-airborne](http://asrl.utias.utoronto.ca/~mdw/kagarudataset.html) | UToronto | 2012 | UAV | FSR | Terrain | | | O | O | | | O | | | | | | |
| [Devon Island Rover](http://asrl.utias.utoronto.ca/datasets/devon-island-rover-navigation/) | UToronto | 2012 | Mob | IJRR | Terrain | O | | | O | | | O | | | | | | Sunsensor, Inclinometer |
| [ACFR Marine](http://marine.acfr.usyd.edu.au/datasets/) | ACFR | 2012 | AUV | | Underwater | O | | O | | O | | O | | | | O | | |
| [UTIAS Multi-Robot](http://asrl.utias.utoronto.ca/datasets/mrclam/) | UT-IAS | 2011 | Mob | IJRR | Urban | O | | | | O | | | | | | | | |
| [Ford Campus](http://robots.engin.umich.edu/SoftwareData/Ford) | UMich | 2011 | Veh | IJRR | Urban | O | | O | O | | O | O | | | | | | |
| [San francisco](https://sites.google.com/site/chenmodavid/datasets) | Stanford | 2011 | Veh | CVPR | Urban | O | | O | O | O | | O | | | | | | DMI |
| [Annotated-laser](https://journals.sagepub.com/doi/10.1177/0278364910389840) | NTU | 2011 | Veh | IJRR | Urban | O | | | | O | O | O | | | | | | |
| [MIT-DARPA](http://grandchallenge.mit.edu/wiki/index.php?title=PublicData) | MIT | 2010 | Veh | IJRR | Urban | O | | O | O | O | O | O | | | | | | |
| [St Lucia Stereo](http://asrl.utias.utoronto.ca/~mdw/uqstluciadataset.html) | UToronto | 2010 | Veh | ACRA | Urban | | | O | O | | | O | | | | | | |
| [St Lucia Multiple Times](https://ieeexplore.ieee.org/abstract/document/5509547) | QUT | 2010 | Veh | ICRA | Urban | | | | O | | | O | | | | | | |
| [Marulan](http://sdi.acfr.usyd.edu.au/) | ACFR | 2010 | Mob | IJRR | Terrain | O | | O | O | | O | O | | | O | | | IR |
| [COLD](https://www.nada.kth.se/cas/COLD/) | KTH | 2009 | Hand | IJRR | Indoor | O | | | | O | O | O | | | | | | |
| [NewCollege](http://www.robots.ox.ac.uk/NewCollegeData/) | Oxford-Robot | 2009 | Mob | IJRR | Urban | O | | O | O | | O | O | | | | | | |
| [Rawseeds-indoor](http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/) | Milano | 2009 | Mob | IROSW | Indoor | O | O | O | | | O | O | | | | O | | |
| [Rawseeds-outdoor](http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/) | Milano | 2009 | Mob | IROSW | Urban | O | O | O | O | | O | O | | | | O | | |
| [FABMAP](http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/) | Oxford-Robot | 2008 | Veh | IJRR | Urban | | | | O | | | O | | | | | | |

## Evaluation
_Evaluation methods for SLAM benchmarks_
- Trajectory Evaluation with Alignment [[Paper](http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf)], [[Code](https://github.com/uzh-rpg/rpg_trajectory_evaluation)]
- Python package for the evaluation of odometry and SLAM [[Code](https://michaelgrupp.github.io/evo/)]
- SLAMBench 3.0: Systematic Automated Reproducible Evaluation of SLAM Systems for Robot Vision Challenges and Scene Understanding [[Paper](https://www.sajad-saeedi.ca/uploads/3/8/5/9/38597021/sb3.pdf)], [[Code](https://github.com/mihaibujanca/slambench3)]
- OpenVINS ov_eval Trajectory Evaulation and Alignment, Timing, and Plotting [[Paper](http://udel.edu/~pgeneva/downloads/papers/c10.pdf)], [[Docs](https://docs.openvins.com/evaluation.html)], [[Code](https://github.com/rpng/open_vins/)]

## Categorized By Topic

### Odometry
_Dataset for odometry Benchmark_
- [FinnForest Dataset](http://urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d)
- [ICL Dataset](https://peringlab.org/lmdata/)
- [UZH-FPV Drone Racing](http://rpg.ifi.uzh.ch/uzh-fpv.html)
- [TUM-Visual-Inertial](https://vision.in.tum.de/data/datasets/visual-inertial-dataset)
- [Visual-Inertial Canoe Dataset](https://databank.illinois.edu/datasets/IDB-9342111)
- [Multi Vehicle Stereo Event Camera Dataset](https://docs.google.com/spreadsheets/d/1mudM7LxXv09ywuQGDp3t_RlIjIdwzg_ZaMu78agLmH4/edit#gid=0)
- [Zurich Urban Micro Aerial Vehicle Dataset](http://rpg.ifi.uzh.ch/zurichmavdataset.html)
- [EuRoC MAV Dataset](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets)
- [TUM Monocular Cameras Dataset](https://vision.in.tum.de/data/datasets/mono-dataset)
- [Event-Camera Dataset and Simulator](http://rpg.ifi.uzh.ch/davis_data.html)
- [TUM Omnidirectional Cameras Dataset](https://vision.in.tum.de/data/datasets/omni-lsdslam)
- [ICL-NUIM RGBD Dataset](https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html)
- [TUM RGB-D SLAM Dataset and Benchmark](https://vision.in.tum.de/data/datasets/rgbd-dataset)
- [Google Cartographer](https://google-cartographer-ros.readthedocs.io/en/latest/data.html)
- [ADVIO Dataset](https://github.com/AaltoVision/ADVIO)
- [Deep Inertial Odometry Dataset](http://deepio.cs.ox.ac.uk/)
- [Aqualoc Underwater Dataset](http://www.lirmm.fr/aqualoc/)
- [Rosario Agricultural Dataset](http://www.cifasis-conicet.gov.ar/robot/doku.php)
- [Stereo Plenoptic Odometry Dataset](https://www.hs-karlsruhe.de/odometry-data/)
- [MADMAX Mars Dataset](https://rmc.dlr.de/morocco2018/)
- [Hilti SLAM Dataset](https://hilti-challenge.com/)
- [VECtor Dataset](https://star-datasets.github.io/vector/)
### Mapping
_Dataset for mapping task_
- [Collaborative SLAM Dataset (CSD)](https://github.com/torrvision/CollaborativeSLAMDataset)
- [Complex Urban](https://sites.google.com/view/complex-urban-dataset)
- [Multi-modal Panoramic 3D Outdoor Dataset (MPO)](https://robotics.ait.kyushu-u.ac.jp/en/archives/research/db)
- [Underwater Caves SONAR and Vision Dataset](http://cirs.udg.edu/caves-dataset/)
- [Chilean Underground Mine Dataset](http://dataset.amtc.cl/#)
- [Oxford Robotcar Dataset](http://robotcar-dataset.robots.ox.ac.uk/)
- [University of Michigan North Campus Long-Term (NCLT) Vision and LIDAR Dataset](http://robots.engin.umich.edu/nclt/)
- [Málaga Stereo and Laser Urban Data Set](https://www.mrpt.org/MalagaUrbanDataset)
- [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/index.php)
- [Challenging data sets for point cloud registration algorithms](https://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:laserregistration)
- [ACFR Marine Robotics Dataset](http://marine.acfr.usyd.edu.au/datasets/)
- [Ford Campus Vision and Lidar Dataset](http://robots.engin.umich.edu/SoftwareData/Ford)
- [InteriorNet](https://interiornet.org/)
- [FMDataset](https://github.com/zhuzunjie17/FastFusion)
- [MADMAX Mars Dataset](https://rmc.dlr.de/morocco2018/)

### Place Recognition
_Dataset gives correspondences of places (images)_
- [Visual-Inertial Canoe Dataset](https://databank.illinois.edu/datasets/IDB-9342111)
- [Symphony Lake Dataset](http://dream.georgiatech-metz.fr/?q=node/79)
- [Alderley Day/Night Dataset](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395)
- [St Lucia Multiple Times of Day](https://wiki.qut.edu.au/display/cyphy/St+Lucia+Multiple+Times+of+Day)
- [New College Vision and Laser Data Set](http://www.robots.ox.ac.uk/NewCollegeData/)
- [FABMAP Dataset](http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/)

### Localization
_Dataset for metric-level localization_
- [ICL Dataset](https://peringlab.org/lmdata/)
- [Cambridge Landmark Dataset](http://mi.eng.cam.ac.uk/projects/relocalisation/)
- [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/index.php)
- [Microsoft 7 scenes](https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/)
- [San Francisco Landmark Dataset](https://sites.google.com/site/chenmodavid/datasets)
- [MADMAX Mars Dataset](https://rmc.dlr.de/morocco2018/)

### Perception
_Dataset with semantic labels / correspondences_
- [KAIST Day/Night Dataset](https://sites.google.com/view/multispectral/home)
- [Robot @ Home Dataset](http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/203-robot-at-home-dataset)
- [SceneNet RBG-D Dataset](https://robotvault.bitbucket.io/scenenet-rgbd.html)
- [Sugar Beets 2016, Agricultural Robot Dataset](http://www.ipb.uni-bonn.de/data/sugarbeets2016/)
- [CityScapes Dataset](https://www.cityscapes-dataset.com/)
- [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/index.php)
- [Multi-Sensor Perception (Marulan) Dataset ](http://sdi.acfr.usyd.edu.au/)
- [InteriorNet](https://interiornet.org/)

## Categorized By Characteristics

### Large-scale
_City-scale map, kilometer level Map_
- [Complex Urban](https://sites.google.com/view/complex-urban-dataset)
- [Multi Vehicle Stereo Event Camera Dataset](https://docs.google.com/spreadsheets/d/1mudM7LxXv09ywuQGDp3t_RlIjIdwzg_ZaMu78agLmH4/edit#gid=0)
- [Multi-modal Panoramic 3D Outdoor Dataset (MPO)](https://robotics.ait.kyushu-u.ac.jp/en/archives/research/db)
- [CityScapes Dataset](https://www.cityscapes-dataset.com/)
- [Solar-powered UAV Sensing and Mapping Dataset](https://projects.asl.ethz.ch/datasets/doku.php?id=fsr2015)
- [Oxford Robotcar Dataset](http://robotcar-dataset.robots.ox.ac.uk/)
- [CCSAD (Stereo Urban) Dattaset](http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset)
- [Málaga Stereo and Laser Urban Data Set](https://www.mrpt.org/MalagaUrbanDataset)
- [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/index.php)
- [Kagaru Airborne Stereo Dataset Dataset](http://asrl.utias.utoronto.ca/~mdw/kagarudataset.html)
- [ACFR Marine Robotics Dataset](http://marine.acfr.usyd.edu.au/datasets/)

### Long-term
_Multi-session, long-term data collection_
- [FinnForest Dataset](http://urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d)
- [KAIST Day/Night Dataset](https://sites.google.com/view/multispectral/home)
- [Visual-Inertial Canoe Dataset](https://databank.illinois.edu/datasets/IDB-9342111)
- [Symphony Lake Dataset](http://dream.georgiatech-metz.fr/?q=node/79)
- [Oxford Robotcar Dataset](http://robotcar-dataset.robots.ox.ac.uk/)
- [University of Michigan North Campus Long-Term (NCLT) Vision and LIDAR Dataset](http://robots.engin.umich.edu/nclt/)
- [Alderley Day/Night Dataset](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395)
- [St Lucia Multiple Times of Day](https://wiki.qut.edu.au/display/cyphy/St+Lucia+Multiple+Times+of+Day)

### Map Complexity
_Variation of mapping structures_
- [Complex Urban](https://sites.google.com/view/complex-urban-dataset/)
- [Multi Vehicle Stereo Event Camera Dataset](https://docs.google.com/spreadsheets/d/1mudM7LxXv09ywuQGDp3t_RlIjIdwzg_ZaMu78agLmH4/edit#gid=0)
- [Multi-modal Panoramic 3D Outdoor Dataset (MPO)](https://robotics.ait.kyushu-u.ac.jp/en/archives/research/db)
- [Málaga Stereo and Laser Urban Data Set](https://www.mrpt.org/MalagaUrbanDataset)
- [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/index.php)
- [Challenging data sets for point cloud registration - algorithms](https://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:laserregistration)

### Extreme Condition
_Extreme environment, motions_
- [FinnForest Dataset](http://urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d)
- [UZH-FPV Drone Racing](http://rpg.ifi.uzh.ch/uzh-fpv.html)
- [Underwater Caves SONAR and Vision Dataset](http://cirs.udg.edu/caves-dataset/): Underwater Environment
- [Chilean Underground Mine Dataset](http://dataset.amtc.cl/#): Underground Environment
- [CityScapes Dataset](https://www.cityscapes-dataset.com/): Foggy Scene
- [EuRoC MAV Dataset](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets): Fast motion
- [Multi-Sensor Perception (Marulan) Dataset ](http://sdi.acfr.usyd.edu.au/): Smoky, dust, and Rain condition

## Categorized by Platform

### Vehicle
_Commercial Vehicle (Four-wheeled on the road)_
- [FinnForest Dataset](http://urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d)
- [Complex Urban Dataset](https://sites.google.com/view/complex-urban-dataset/)
- [Multi Vehicle Stereo Event Camera Dataset](https://docs.google.com/spreadsheets/d/1mudM7LxXv09ywuQGDp3t_RlIjIdwzg_ZaMu78agLmH4/edit#gid=0)
- [KAIST Day/Night Dataset](https://sites.google.com/view/multispectral/home)
- [Multi-modal Panoramic 3D Outdoor Dataset (MPO)](https://robotics.ait.kyushu-u.ac.jp/en/archives/research/db)
- [Oxford Robotcar Dataset](http://robotcar-dataset.robots.ox.ac.uk/)
- [CityScapes Dataset](https://www.cityscapes-dataset.com/)
- [CCSAD (Stereo Urban) Dattaset](http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset)
- [Málaga Stereo and Laser Urban Data Set](https://www.mrpt.org/MalagaUrbanDataset)
- [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/index.php)
- [Day and Night with Lateral Pose Change Dataset](https://wiki.qut.edu.au/display/cyphy/Day+and+Night+with+Lateral+Pose+Change+Datasets)
- [Alderley Day/Night Dataset](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395)
- [Annotated-laser Dataset](http://any.csie.ntu.edu.tw/data) (Link Broken)
- [San Francisco Landmark Dataset](https://sites.google.com/site/chenmodavid/datasets)
- [Ford Campus Vision and Lidar Dataset](http://robots.engin.umich.edu/SoftwareData/Ford)
- [St Lucia Stereo Vehicular Dataset](http://asrl.utias.utoronto.ca/~mdw/uqstluciadataset.html)
- [St Lucia Multiple Times of Day](https://wiki.qut.edu.au/display/cyphy/St+Lucia+Multiple+Times+of+Day)
- [MIT DARPA Urban Challenge Dataset](http://grandchallenge.mit.edu/wiki/index.php?title=PublicData)
- [FABMAP Dataset](http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/)

### Mobile Robot
_Mobile Robots (Ex. Husky, Rover.. )_
- [Rosario Dataset](http://www.cifasis-conicet.gov.ar/robot/doku.php)
- [Sugar Beets 2016, Agricultural Robot Dataset](http://www.ipb.uni-bonn.de/data/sugarbeets2016/)
- [Chilean Underground Mine Dataset](http://dataset.amtc.cl/#)
- [Katwijk Beach Planetary Rover Dataset](https://robotics.estec.esa.int/datasets/katwijk-beach-11-2015/)
- [Robot @ Home Dataset](http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/203-robot-at-home-dataset)
- [University of Michigan North Campus Long-Term (NCLT) Vision and LIDAR Dataset](http://robots.engin.umich.edu/nclt/)
- [Rawseeds In/Outdoor Dataset](http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/)
- [Canadian Planetary Emulation Terrain 3D Mapping Dataset](http://asrl.utias.utoronto.ca/datasets/3dmap/#Datasets)
- [Devon Island Rover Navigation Dataset](http://asrl.utias.utoronto.ca/datasets/devon-island-rover-navigation/)
- [Multi-Robot Cooperative Localization and Mapping Dataset](http://asrl.utias.utoronto.ca/datasets/mrclam/)
- [Multi-Sensor Perception (Marulan) Dataset ](http://sdi.acfr.usyd.edu.au/)
- [TUM RGB-D SLAM Dataset and Benchmark](https://vision.in.tum.de/data/datasets/rgbd-dataset)
- [New College Vision and Laser Data Set](http://www.robots.ox.ac.uk/NewCollegeData/)
- [MADMAX Mars Dataset](https://rmc.dlr.de/morocco2018/)

### Unmanned Aerial Vehicle
_Unmanned aerial robots include drone_
- [ICL Dataset](https://peringlab.org/lmdata/)
- [UZH-FPV Drone Racing](http://rpg.ifi.uzh.ch/uzh-fpv.html)
- [Zurich Urban Micro Aerial Vehicle Dataset](http://rpg.ifi.uzh.ch/zurichmavdataset.html)
- [Event-Camera Dataset and Simulator](http://rpg.ifi.uzh.ch/davis_data.html)
- [Solar-powered UAV Sensing and Mapping Dataset](https://projects.asl.ethz.ch/datasets/doku.php?id=fsr2015)
- [EuRoC MAV Dataset](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets)
- [Kagaru Airborne Stereo Dataset Dataset](http://asrl.utias.utoronto.ca/~mdw/kagarudataset.html)

### Autonomous Underwater Vehicle
_Underwater robots include ROV for simplicity_
- [Aqualoc Underwater Dataset](http://www.lirmm.fr/aqualoc/)
- [Underwater Caves SONAR and Vision Dataset](http://cirs.udg.edu/caves-dataset/)
- [ACFR Marine Robotics Dataset](http://marine.acfr.usyd.edu.au/datasets/)

### Unmanned Surface Vehicle
_Water surface vehicle such as canoe and boat_
- [Visual-Inertial Canoe Dataset](https://databank.illinois.edu/datasets/IDB-9342111)
- [Symphony Lake Dataset](http://dream.georgiatech-metz.fr/?q=node/79)

### Hand-held Device
_Hand-held platform by human_
- [Collaborative SLAM Dataset (CSD)](https://github.com/torrvision/CollaborativeSLAMDataset)
- [SceneNet RBG-D Dataset](https://robotvault.bitbucket.io/scenenet-rgbd.html)
- [Event-Camera Dataset and Simulator](http://rpg.ifi.uzh.ch/davis_data.html)
- [Comprehensive RGB-D Benchmark (CoRBS)](http://corbs.dfki.uni-kl.de/?pagerd_tumlltzzf42zsv6de7b9)
- [Augmented ICL-NUIM Reconstruction Dataset](http://redwood-data.org/indoor/index.html)
- [ICL-NUIM RGBD Dataset](https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html)
- [Challenging data sets for point cloud registration algorithms](https://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:laserregistration)
- [Cosy Localization Database (COLD)](https://www.pronobis.pro/#data)
- [ADVIO Dataset](https://github.com/AaltoVision/ADVIO)
- [Deep Inertial Odometry Dataset](http://deepio.cs.ox.ac.uk/)
- [InteriorNet](https://interiornet.org/)
- [Stereo Plenoptic Dataset](https://www.hs-karlsruhe.de/odometry-data/)
- [FMDataset](https://github.com/zhuzunjie17/FastFusion)
- [Hilti SLAM Dataset](https://hilti-challenge.com/)

## Categorized by Environment
### Urban
_City, campus, town, and infrastructures_
- [UZH-FPV Drone Racing](http://rpg.ifi.uzh.ch/uzh-fpv.html)
- [ADVIO Dataset](https://github.com/AaltoVision/ADVIO)
- [Stereo Plenoptic Dataset](https://www.hs-karlsruhe.de/odometry-data/)
- [KAIST Day/Night Dataset](https://sites.google.com/view/multispectral/home)
- [TUM-Visual-Inertial](https://vision.in.tum.de/data/datasets/visual-inertial-dataset)
- [Complex Urban](https://sites.google.com/view/complex-urban-dataset/)
- [Multi Vehicle Stereo Event Camera Dataset](https://docs.google.com/spreadsheets/d/1mudM7LxXv09ywuQGDp3t_RlIjIdwzg_ZaMu78agLmH4/edit#gid=0)
- [Zurich Urban Micro Aerial Vehicle Dataset](http://rpg.ifi.uzh.ch/zurichmavdataset.html)
- [TUM Monocular Cameras Dataset](https://vision.in.tum.de/data/datasets/mono-dataset)
- [CityScapes Dataset](https://www.cityscapes-dataset.com/)
- [Oxford Robotcar Dataset](http://robotcar-dataset.robots.ox.ac.uk/)
- [University of Michigan North Campus Long-Term (NCLT) Vision and LIDAR Dataset](http://robots.engin.umich.edu/nclt/)
- [Event-Camera Dataset and Simulator](http://rpg.ifi.uzh.ch/davis_data.html)
- [CCSAD (Stereo Urban) Dattaset](http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset)
- [TUM Omnidirectional Cameras Dataset](https://vision.in.tum.de/data/datasets/omni-lsdslam)
- [Cambridge Landmark Dataset](http://mi.eng.cam.ac.uk/projects/relocalisation/)
- [Málaga Stereo and Laser Urban Data Set](https://www.mrpt.org/MalagaUrbanDataset)
- [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/index.php)
- [Alderley Day/Night Dataset](https://wiki.qut.edu.au/pages/viewpage.action?pageId=181178395)
- [Challenging data sets for point cloud registration algorithms](https://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:laserregistration)
- [Multi-Robot Cooperative Localization and Mapping Dataset](http://asrl.utias.utoronto.ca/datasets/mrclam/)
- [Ford Campus Vision and Lidar Dataset](http://robots.engin.umich.edu/SoftwareData/Ford)
- [San Francisco Landmark Dataset](https://sites.google.com/site/chenmodavid/datasets)
- [Annotated-laser Dataset](http://any.csie.ntu.edu.tw/data) (Link Broken)
- [MIT DARPA Urban Challenge Dataset](http://grandchallenge.mit.edu/wiki/index.php?title=PublicData)
- [St Lucia Stereo Vehicular Dataset](http://asrl.utias.utoronto.ca/~mdw/uqstluciadataset.html)
- [St Lucia Multiple Times of Day](https://wiki.qut.edu.au/display/cyphy/St+Lucia+Multiple+Times+of+Day)
- [New College Vision and Laser Data Set](http://www.robots.ox.ac.uk/NewCollegeData/)
- [Rawseeds In/Outdoor Dataset](http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/)
- [FABMAP Dataset](http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/)

### Indoor
_Indoor environment_
- [ICL Dataset](https://peringlab.org/lmdata/)
- [FMDataset](https://github.com/zhuzunjie17/FastFusion)
- [UZH-FPV Drone Racing](http://rpg.ifi.uzh.ch/uzh-fpv.html)
- [Collaborative SLAM Dataset (CSD)](https://github.com/torrvision/CollaborativeSLAMDataset)
- [InteriorNet](https://interiornet.org/)
- [TUM-Visual-Inertial](https://vision.in.tum.de/data/datasets/visual-inertial-dataset)
- [Multi-modal Panoramic 3D Outdoor Dataset (MPO)](https://robotics.ait.kyushu-u.ac.jp/en/archives/research/db)
- [Robot @ Home Dataset](http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/203-robot-at-home-dataset)
- [SceneNet RBG-D Dataset](https://robotvault.bitbucket.io/scenenet-rgbd.html)
- [EuRoC MAV Dataset](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets)
- [TUM Monocular Cameras Dataset](https://vision.in.tum.de/data/datasets/mono-dataset)
- [Comprehensive RGB-D Benchmark (CoRBS)](http://corbs.dfki.uni-kl.de/?pagerd_tumlltzzf42zsv6de7b9)
- [TUM Omnidirectional Cameras Dataset](https://vision.in.tum.de/data/datasets/omni-lsdslam)
- [Augmented ICL-NUIM Reconstruction Dataset](http://redwood-data.org/indoor/index.html)
- [ICL-NUIM RGBD Dataset](https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html)
- [Microsoft 7 scenes](https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/)
- [TUM RGB-D SLAM Dataset and Benchmark](https://vision.in.tum.de/data/datasets/rgbd-dataset)
- [Cosy Localization Database (COLD)](https://www.pronobis.pro/#data)
- [Rawseeds In/Outdoor Dataset](http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/)
- [Google Cartographer](https://google-cartographer-ros.readthedocs.io/en/latest/data.html)

### Terrain
_Rough terrain, underground, lake and farm_
- [FinnForest Dataset](http://urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d)
- [Rosario Agricultural Dataset](http://www.cifasis-conicet.gov.ar/robot/doku.php)
- [Visual-Inertial Canoe Dataset](https://databank.illinois.edu/datasets/IDB-9342111)
- [Chilean Underground Mine Dataset](http://dataset.amtc.cl/#)
- [Symphony Lake Dataset](http://dream.georgiatech-metz.fr/?q=node/79)
- [Sugar Beets 2016, Agricultural Robot Dataset](http://www.ipb.uni-bonn.de/data/sugarbeets2016/)
- [Katwijk Beach Planetary Rover Dataset](https://robotics.estec.esa.int/datasets/katwijk-beach-11-2015/)
- [Solar-powered UAV Sensing and Mapping Dataset](https://projects.asl.ethz.ch/datasets/doku.php?id=fsr2015)
- [Event-Camera Dataset and Simulator](http://rpg.ifi.uzh.ch/davis_data.html)
- [Canadian Planetary Emulation Terrain 3D Mapping Dataset](http://asrl.utias.utoronto.ca/datasets/3dmap/#Datasets)
- [Challenging data sets for point cloud registration - algorithms](https://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:laserregistration)
- [Kagaru Airborne Stereo Dataset Dataset](http://asrl.utias.utoronto.ca/~mdw/kagarudataset.html)
- [Devon Island Rover Navigation Dataset](http://asrl.utias.utoronto.ca/datasets/devon-island-rover-navigation/)
- [Multi-Sensor Perception (Marulan) Dataset ](http://sdi.acfr.usyd.edu.au/)
- [MADMAX Mars Dataset](https://rmc.dlr.de/morocco2018/)

### Underwater
_Underwater floor, cave_
- [Aqualoc Underwater Dataset](http://www.lirmm.fr/aqualoc/)
- [Underwater Caves SONAR and Vision Dataset](http://cirs.udg.edu/caves-dataset/)
- [ACFR Marine Robotics Dataset](http://marine.acfr.usyd.edu.au/datasets/)

### Simulation
_Simulation Scene_
- [TartanAir](https://theairlab.org/tartanair-dataset/)
## Contributing
Please Feel free to send a [pull request](https://github.com/youngguncho/awesome-slam-datasets/pulls) to modify the list or add datasets.

## License
[![CC0](http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)](https://creativecommons.org/publicdomain/zero/1.0/)

To the extent possible under law, [Younggun Cho](https://github.com/youngguncho) has waived all copyright and related or neighboring rights to this work.