Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Kyrie-Zhao/awesome-real-time-AI
This is a list of awesome edgeAI inference related papers.
https://github.com/Kyrie-Zhao/awesome-real-time-AI
List: awesome-real-time-AI
Last synced: about 1 month ago
JSON representation
This is a list of awesome edgeAI inference related papers.
- Host: GitHub
- URL: https://github.com/Kyrie-Zhao/awesome-real-time-AI
- Owner: Kyrie-Zhao
- Created: 2022-08-09T05:09:20.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2023-12-21T08:43:03.000Z (12 months ago)
- Last Synced: 2024-05-22T01:00:27.862Z (7 months ago)
- Size: 399 KB
- Stars: 71
- Watchers: 5
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-artificial-intelligence - Awesome Real-time AI - This is a list of awesome real-time AI and DNN inference related projects & papers. (Other awesome AI lists)
- ultimate-awesome - awesome-real-time-AI - This is a list of awesome edgeAI inference related papers. (Other Lists / PowerShell Lists)
README
# Awesome Real-time AI ![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg) [![Maintenance](https://img.shields.io/badge/Maintained%3F-YES-green.svg)]
This is a list of awesome real-time AI and DNN inference related projects & papers.
## Contents
- [Benchmark and Dataset](#benchmark-and-dataset)
- [Open Source Projects](#open-source-projects)
- [Papers](#papers)
- [Survey](#survey)
- [DNN Compiler](#dnn-compiler)
- [DNN Extraction](#dnn-extraction)
- [Edge-Cloud Collaborative Inference](#edge-cloud-collaborative-inference)
- [Concurrent DNN Inference](#concurrent-dnn-inference)
- [Heterogeneous Platforms](#heterogeneous-platforms)
- [HPC and Archs](#hpc-and-archs)
- [Latency Predictor](#latency-predictor)
- [TinyML](#tinyml)
- [Multi-modality Inference](#multi-modality-inference)
- [Sparse Inference](#sparse-inference)
- [Privacy-aware Inference](#privacy-aware-inference)
- [Distributed Inference](#distributed-inference)
- [Other Cool Ideas](#other-cool-ideas)
## Benchmark and Dataset
- [MLPerf](https://github.com/mlcommons/inference)
- [Tracy Profiler](https://github.com/wolfpld/tracy)
- [CUDA Flux](https://github.com/UniHD-CEG/cuda-flux)
- [Tango](https://gitlab.com/Tango-DNNbench/Tango)## Open Source Projects
- [TVM](https://tvm.apache.org/)
- [MLIR](https://github.com/tensorflow/mlir)
- [KubeEdge](https://github.com/kubeedge/kubeedge)
- [RAF](https://github.com/awslabs/raf.git)
- [INFaas](https://github.com/stanford-mast/INFaaS)
- [REEF](https://github.com/SJTU-IPADS/reef)
- [DeepSparse](https://github.com/neuralmagic/deepsparse)
- [AlphaTensor](https://github.com/deepmind/alphatensor)
- [JAX](https://github.com/google/jax)
- [Hidet](https://github.com/yaoyaoding/hidet-artifacts)
- [FreeTensor](https://github.com/roastduck/FreeTensor)
- [MAESTRO](https://github.com/maestro-project)
- [IREE](https://github.com/openxla/iree)
- [TinyML](https://quip.com/MENbAvuQkrb0)## Papers
### Survey
- [Edge Intelligence: Architectures, Challenges, and Applications](https://arxiv.org/pdf/2003.12172) by Xu, Dianlei, et al., arxiv 2020
- [A Survey of Multi-Tenant Deep Learning Inference on GPU](https://arxiv.org/pdf/2203.09040) by Yu, Fuxun, et al., arxiv 2022
- [Machine Learning in Real-Time Internet of Things (IoT) Systems: A Survey](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9739684) by Bian, Jiang, et al., IOTJ 2022
- [AI Augmented Edge and Fog Computing: Trends and Challenges](https://arxiv.org/pdf/2208.00761) by Tuli S, Mirhakimi F, Pallewatta S, et al., arxiv 2022
- [Enable deep learning on mobile devices: Methods, systems, and applications](https://dl.acm.org/doi/pdf/10.1145/3486618) by Cai, Han, et al., TODAES 2022
- [Multi-DNN Accelerators for Next-Generation AI Systems](https://arxiv.org/pdf/2205.09376) by Venieris, Stylianos I., Christos-Savvas Bouganis, and Nicholas D. Lane., arxiv 2022
- [A Survey of GPU Multitasking Methods Supported by Hardware Architecture](https://ieeexplore.ieee.org/iel7/71/4359390/09548839.pdf) Zhao, Chen, et al., IEEE TPDS 2021
- [The Future of Consumer Edge-AI Computing](https://arxiv.org/pdf/2210.10514) by Laskaridis, Stefanos, et al., arxiv 2022
- [DLAS: An Exploration and Assessment of the Deep Learning Acceleration Stack](https://arxiv.org/pdf/2311.08909) by Gibson, Perry, et al., arxiv 2023### DNN Compiler
- [Moses: Exploiting Cross-device Transferable Features for On-device Tensor Program Optimization](https://dl.acm.org/doi/pdf/10.1145/3572864.3580330) by Zhao, Zhihe, et al., HotMobile 2023
- [TASO: The Tensor Algebra SuperOptimizer for Deep Learning](https://dl.acm.org/doi/abs/10.1145/3341301.3359630) by Zhihao Jia et al., SOSP 2019
- [AStitch: Enabling a New Multi-dimensional Optimization Space for Memory-Intensive ML Training and Inference on Modern SIMT Architectures](https://dl.acm.org/doi/10.1145/3503222.3507723) by Zhen Zheng et al., ASPLOS 2022
- [PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections](https://www.usenix.org/conference/osdi21/presentation/wang) by Haojie Wang et al., OSDI 2021
- [Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks](https://www.usenix.org/conference/osdi20/presentation/ma) by Lingxiao Ma et al., OSDI 2020
- [TASO: The Tensor Algebra SuperOptimizer for Deep Learning](https://dl.acm.org/doi/abs/10.1145/3341301.3359630) by Zhihao Jia et al., SOSP 2019
- [Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance](https://proceedings.mlsys.org/paper/2022/hash/38b3eff8baf56627478ec76a704e9b52-Abstract.html) by Jiarong Xing et al., MLSys 2022
- [Ansor: Generating High-Performance Tensor Programs for Deep Learning](https://arxiv.org/abs/2006.06762) by Lianmin Zheng et al., OSDI 2020
- [TenSet: A Large-scale Program Performance Dataset for Learned Tensor Compilers](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a684eceee76fc522773286a895bc8436-Abstract-round1.html) by Lianmin Zheng., NeurIPS 2021
- [Romou: Rapidly Generate High-Performance Tensor Kernels for Mobile GPUs](https://www.microsoft.com/en-us/research/uploads/prod/2022/02/mobigpu_mobicom22_camera.pdf) by Liang, Rendong, et al., MobiCom 2022
- [Asymo: scalable and efficient deep-learning inference on asymmetric mobile cpus](https://dl.acm.org/doi/abs/10.1145/3447993.3448625) by Wang, Manni, et al., MobiCom 2021
- [Ios: Inter-operator scheduler for cnn acceleration](https://proceedings.mlsys.org/paper/2021/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf) by Ding, Yaoyao, et al., MLSys 2021
- [DeepCuts: A Deep Learning Optimization Framework for Versatile GPU Workloads](https://dl.acm.org/doi/pdf/10.1145/3453483.3454038) by Jung, Wookeun, Thanh Tuan Dao, and Jaejin Lee., PLDI 2021
- [CASE: a compiler-assisted SchEduling framework for multi-GPU systems](https://dl.acm.org/doi/pdf/10.1145/3503221.3508423?casa_token=c738_W6lYCkAAAAA:QcpPBlGQcRjbfbnr99-N7fJXV5ssZMVL9odTdrfRFRLXtaOcAAQOeh3JwhEeaQvOEpX1IRJquURmTg) by Chen, Chao, Chris Porter, and Santosh Pande., PPoPP 2022
- [Chameleon: Adaptive code optimization for expedited deep neural network compilation](https://arxiv.org/pdf/2001.08743) by Ahn, Byung Hoon, et al., arxiv 2020
- [Analytical characterization and design space exploration for optimization of CNNs](https://dl.acm.org/doi/pdf/10.1145/3445814.3446759) by Li, Rui, et al., ASPLOS 2021
- [DNNFusion: accelerating deep neural networks execution with advanced operator fusion](https://dl.acm.org/doi/pdf/10.1145/3453483.3454083) by Niu, Wei, et al., PLDI 2021
- [AutoGTCO: Graph and Tensor Co-Optimize for Image Recognition with Transformers on GPU](https://ieeexplore.ieee.org/iel7/9643423/9643432/09643487.pdf?casa_token=LyByXa84XpMAAAAA:4qRC6_8TE6iVgSlL0NMKy4tRJ6aoDB47fqcGVxhwM7dL1nddqsVuIs2dAmHVGrCN8dBhTCE) by Bai, Yang, et al., ICCAD 2021
- [DietCode: Automatic Optimization for Dynamic Tensor Programs](https://proceedings.mlsys.org/paper/2022/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf) by Zheng, Bojian, et al., MLSys 2022
- [ROLLER: Fast and Efficient Tensor Compilation for Deep Learning](https://www.usenix.org/system/files/osdi22-zhu.pdf) by Zhu, Hongyu, et al., OSDI 2022
- [FamilySeer: Towards Optimized Tensor Codes by Exploiting Computation Subgraph Similarity](https://arxiv.org/pdf/2201.00194) by Zhang, Shanjun, et al., arxiv 2022
- [Reusing Auto-Schedules for Efficient DNN Compilation](https://arxiv.org/pdf/2201.05587) by Gibson, Perry, and José Cano., arxiv 2022
- [Hidet: Task Mapping Programming Paradigm for Deep Learning Tensor Programs](https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hidet%3A+Task+Mapping+Programming+Paradigm+for+Deep+Learning+Tensor+Programs&btnG=#d=gs_cit&t=1666445708655&u=%2Fscholar%3Fq%3Dinfo%3Ahj_cZ1YLpt8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den) by Ding, Yaoyao, et al., arxiv 2022
- [Cortex: A Compiler for Recursive Deep Learning Models](https://proceedings.mlsys.org/paper/2021/file/182be0c5cdcd5072bb1864cdee4d3d6e-Paper.pdf) by Fegade, Pratik, et al., MLSys 2021
- [SuperScaler: Supporting Flexible DNN Parallelization via a Unified Abstraction](https://arxiv.org/pdf/2301.08984) by Lin, Zhiqi, et al., arxiv 2023
- [Seastar: Vertex-Centric Programming for Graph Neural Networks](https://dl.acm.org/doi/pdf/10.1145/3447786.3456247) by Wu, Yidi, et al., EuroSys 2021
- [On Optimizing the Communication of Model Parallelism](https://arxiv.org/pdf/2211.05322) by Zhuang, Yonghao, et al., MLSys 2023
- [ALT: Boosting Deep Learning Performance by Breaking the Wall between Graph and Operator Level Optimizations](https://arxiv.org/pdf/2210.12415) by Xu, Zhiying, et al., arxiv 2022
- [AGO: Boosting Mobile AI Inference Performance by Removing Constraints on Graph Optimization](https://arxiv.org/pdf/2212.01005) by Xu, Zhiying, Hongding Peng, and Wei Wang., INFOCOM 2023
- [Enabling Data Movement and Computation Pipelining in Deep Learning Compiler](https://arxiv.org/pdf/2210.16691) by Huang, Guyue, et al., MLSys 2023
- [Automatic Horizontal Fusion for GPU Kernels](https://ieeexplore.ieee.org/iel7/9741235/9741095/09741270.pdf) by Li, Ao, et al., CGO 2022
- [Compiler Framework for Optimizing Dynamic Parallelism on GPUs](https://ieeexplore.ieee.org/iel7/9741235/9741095/09741284.pdf) by Olabi, Mhd Ghaith, et al., CGO 2022
- [Transfer-Tuning: Reusing Auto-Schedules for Efficient Tensor Program Code Generation](https://www.dcs.gla.ac.uk/~josecr/pub/2022_pact.pdf) by Gibson, Perry, and José Cano., PACT 2022
- [Nnsmith: Generating diverse and valid test cases for deep learning compilers](https://dl.acm.org/doi/pdf/10.1145/3575693.3575707?casa_token=FmJqEQzBGBoAAAAA:OmPVufwYG4r5CFS0G-GXFJ8wu9PGueUvYzoXkPz60Kg_IkVIwvk4rlbQ5eY8hFhWcWkOmAdO21l-) by Liu, Jiawei, et al., ASPLOS 2023
- [Codon: A Compiler for High-Performance Pythonic Applications and DSLs](https://dl.acm.org/doi/pdf/10.1145/3578360.3580275) by Shajii, Ariya, et al., CC 2023
- [CMLCompiler: A Unified Compiler for Classical Machine Learning](https://arxiv.org/pdf/2301.13441) by Wen, Xu, et al., arxiv 2023
- [VeGen: A Vectorizer Generator for SIMD and Beyond](https://dl.acm.org/doi/pdf/10.1145/3445814.3446692) by Chen, Yishen, et al., ASPLOS 2021
- [Composable and Modular Code Generation in MLIR](https://arxiv.org/pdf/2202.03293) by Vasilache, Nicolas, et al., arxiv 2022
- [TinyIREE: An ML Execution Environment for Embedded Systems from Compilation to Deployment](https://arxiv.org/pdf/2205.14479) by Liu, Hsin-I. Cindy, et al., arxiv 2022
- [High Performance GPU Code Generation for Matrix-Matrix Multiplication using MLIR Some Early Results](https://arxiv.org/pdf/2108.13191) by Katel, Navdeep, Vivek Khandelwal, and Uday Bondhugula., arxiv 2021
- [Auto-Parallelizing Large Models with Rhino: A Systematic Approach on Production AI Platform](https://arxiv.org/pdf/2302.08141) by Zhang, Shiwei, et al., arxiv 2023
- [Triton: an intermediate language and compiler for tiled neural network computations](https://dl.acm.org/doi/pdf/10.1145/3315508.3329973) by Tillet, Philippe, Hsiang-Tsung Kung, and David Cox., SIGPLAN Workshop 2019
- [Flashattention: Fast and memory-efficient exact attention with io-awareness](https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf) by Dao, Tri, et al., NeurIPS 2022
- [Graphene: An IR for Optimized Tensor Computations on GPUs](https://dl.acm.org/doi/pdf/10.1145/3582016.3582018) by Hagedorn, Bastian, et al., ASPLOS 2023
- [Tensorir: An abstraction for automatic tensorized program optimization](https://dl.acm.org/doi/pdf/10.1145/3575693.3576933) by Feng, Siyuan, et al., ASPLOS 2023
- [SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning](https://arxiv.org/pdf/2207.04606) by Ye, Zihao, et al., ASPLOS 2023
- [Heron: Automatically Constrained High-Performance Library Generation for Deep Learning Accelerators](https://dl.acm.org/doi/pdf/10.1145/3582016.3582061?casa_token=gFiOV2z11E0AAAAA:14yK3A80hbov2KcRDvVRbewI6UU6_pxYay4lHkFsrvQUdVpIuiFgdG1vE0FyC5VZXhwEWq_MEs787YE) by Bi, Jun, et al., ASPLOS 2023
- [Flextensor: An automatic schedule exploration and optimization framework for tensor computation on heterogeneous system](https://dl.acm.org/doi/pdf/10.1145/3373376.3378508?casa_token=IjkvAFAi79kAAAAA:tKUU4n_JfMUdRsXtqMD4oQh78L1mgsEiEcL97ATkKuhteZtG3cDXLNv3bE6GTeAS7Ltu-VmVYD596w) by Zheng, Size, et al., ASPLOS 2020
- [AutoMap: Automatic Mapping of Neural Networks to Deep Learning Accelerators for Edge Devices](https://ieeexplore.ieee.org/iel7/43/6917053/09999408.pdf?casa_token=34y7zq9lfHoAAAAA:oZ969RMs8uaqaPbe5ChLAAFv4W26n-mt2NkmcCFO2atwD7FYc-5G7P_CtWg-ehvf-mAKZopSCGo) by Wang, Yanhong, et al., TCAD 2022
- [Optimizing Dynamic Neural Networks with Brainstorm](https://www.usenix.org/system/files/osdi23-cui.pdf) by Cui, Weihao, et al., OSDI 2023
- [EINNET: Optimizing Tensor Programs with Derivation-Based Transformations](https://www.usenix.org/system/files/osdi23-zheng.pdf) by Zheng, Liyan, et al., OSDI 2023
- [Welder: Scheduling Deep Learning Memory Access via Tile-graph](https://www.usenix.org/system/files/osdi23-shi.pdf) by Shi, Yining, et al., OSDI 2023
- [TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs](https://graph-learning-benchmarks.github.io/assets/papers/glb2023/TpuGraphs_4_pager___Appendix.pdf) by Mangpo, Phitchaya, et al., arxiv 2023
- [Transfer Learning Across Heterogeneous Features For Efficient Tensor Program Generation](https://arxiv.org/pdf/2304.05430) by Verma, Gaurav, et al., arxiv 2023
- [Effectively Scheduling Computational Graphs of Deep Neural Networks toward Their {Domain-Specific} Accelerators](https://www.usenix.org/system/files/osdi23-zhao.pdf) by Zhao, Jie, et al., arxiv 2023
- [Accelerating In-Browser Deep Learning Inference on Diverse Edge Clients through Just-in-Time Kernel Optimizations](https://arxiv.org/pdf/2309.08978) by Jia, Fucheng, et al. arxiv 2023
- [Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning](https://www.usenix.org/system/files/osdi23-zhang-chen.pdf) by Zhang, Chen, et al., OSDI 2023
- [Revisiting the Evaluation of Deep Learning-Based Compiler Testing](https://www.ijcai.org/proceedings/2023/0542.pdf) by Tian, Yongqiang, et al., IJCAI 2023
- [Learning Compiler Pass Orders using Coreset and Normalized Value Prediction](https://openreview.net/pdf?id=DwEU2zXeHG) by Liang, Youwei, et al., ICML 2023
- [Learning to make compiler optimizations more effective](https://dl.acm.org/doi/pdf/10.1145/3460945.3464952) by Mammadli, Rahim, et al. PLDI 2021
- [C2TACO: Lifting Tensor Code to TACO](https://dl.acm.org/doi/pdf/10.1145/3624007.3624053) by Magalhães, José Wesley de Souza, et al., GPCE 2023
- [TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs](https://arxiv.org/pdf/2308.13490) by Phothilimthana, Phitchaya Mangpo, et al., arxiv 2023
- [Autotuning convolutions is easier than you think](https://dl.acm.org/doi/pdf/10.1145/3570641) by Tollenaere, Nicolas, et al., ACM TACO 2023### DNN Extraction
- [DnD: A Cross-Architecture Deep Neural Network Decompiler](https://www.usenix.org/system/files/sec22-wu-ruoyu.pdf) by Wu, Ruoyu, et al., USENIX Security 22
- [Decompiling x86 Deep Neural Network Executables](https://www.usenix.org/system/files/usenixsecurity23-liu-zhibo.pdf) by Liu, Zhibo, et al., USENIX Security 23
- [LibSteal: Model Extraction Attack towards Deep Learning Compilers by Reversing DNN Binary Library](https://faculty.ist.psu.edu/wu/papers/DLCompilerAttack.pdf) by Zhang, Jinquan, Pei Wang, and Dinghao Wu., ENASE 2023
- [Reverse engineering convolutional neural networks through side-channel information leaks](https://dl.acm.org/doi/pdf/10.1145/3195970.3196105?casa_token=B38jBI0JuX0AAAAA:9L-h52ZfSlSWE-WWWdx7Xjutwe-8_8tUgbZTR-qyDOnNDkLz5cM2CmJDVR1idBmXQWUfBMHGKbPjWw) by Hua, Weizhe, Zhiru Zhang, and G. Edward Suh., DAC 2018
- [Cache telepathy: Leveraging shared resource attacks to learn {DNN} architectures](https://www.usenix.org/system/files/sec20-yan.pdf) by Yan, Mengjia, Christopher W. Fletcher, and Josep Torrellas., USENIX Security 2020
- [Knockoff nets: Stealing functionality of black-box models](http://openaccess.thecvf.com/content_CVPR_2019/papers/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.pdf) by Orekondy, Tribhuvanesh, Bernt Schiele, and Mario Fritz., CVPR 2019
- [Deepsniffer: A dnn model extraction framework based on learning architectural hints](https://dl.acm.org/doi/pdf/10.1145/3373376.3378460) by Hu, Xing, et al., ASPLOS 2020
- [I know what you trained last summer: A survey on stealing machine learning models and defences](https://dl.acm.org/doi/pdf/10.1145/3595292) by Oliynyk, Daryna, Rudolf Mayer, and Andreas Rauber., ACM Computing Surveys 2023
- [Deepsteal: Advanced model extractions leveraging efficient weight stealing in memories](https://ieeexplore.ieee.org/iel7/9833550/9833558/09833743.pdf) by Rakin, Adnan Siraj, et al., S&P 2022
- [Hermes attack: Steal {DNN} models with lossless inference accuracy](https://www.usenix.org/system/files/sec21-zhu.pdf) by Zhu, Yuankun, et al., USENIX Security 2021
- [Stealing machine learning models via prediction {APIs}](https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_tramer.pdf) by Tramèr, Florian, et al., USENIX Security 2016
- [SoK: Demystifying Binary Lifters Through the Lens of Downstream Applications](https://ieeexplore.ieee.org/iel7/9833550/9833558/09833799.pdf) by Liu, Zhibo, et al., S&P 2022
- [HuffDuff: Stealing Pruned DNNs from Sparse Accelerators](https://dl.acm.org/doi/pdf/10.1145/3575693.3575738?casa_token=UEoKrzBXTzYAAAAA:_UB1F7fJhvel5StbF--xACQ6B9KU1cL7XWUP_V_tSSlRV0J7OVIxTqOR8ysRpi31lE8Dh7w03A_V-w) by Yang, Dingqing, Prashant J. Nair, and Mieszko Lis., ASPLOS 2023### Edge-Cloud Collaborative Inference
- [EdgeML: An AutoML framework for real-time deep learning on the edge](https://dl.acm.org/doi/10.1145/3450268.3453520) by Zhao, Zhihe, et al., IoTDI 2021
- [SPINN: synergistic progressive inference of neural networks over device and cloud](https://dl.acm.org/doi/pdf/10.1145/3372224.3419194) by Laskaridis, Stefanos, et al., MobiCom 2020
- [Clio: Enabling automatic compilation of deep learning pipelines across iot and cloud](https://dl.acm.org/doi/pdf/10.1145/3372224.3419215?casa_token=XuIaaSOhXj8AAAAA:yC9swMPqSUSKBfe8yFelcaUvzBb3VHrpYroB87OFI0XgbEDZ6-EQipQFpnP9aduYdB3kjOu0MdNcRg) by Huang, Jin, et al., MobiCom 2020
- [Neurosurgeon: Collaborative intelligence between the cloud and mobile edge](https://dl.acm.org/doi/pdf/10.1145/3093337.3037698) by Kang, Yiping, et al., ASPLOS 2017
- [Mistify: Automating DNN Model Porting for On-Device Inference at the Edge](https://www.usenix.org/system/files/nsdi21-guo.pdf) by Guo, Peizhen, et al., NSDI 2021
- [Deep compressive offloading: Speeding up neural network inference by trading edge computation for network latency.](https://dl.acm.org/doi/pdf/10.1145/3384419.3430898) by Yao, Shuochao, et al., SenSys 2020
- [Elf: accelerate high-resolution mobile deep vision with content-aware parallel offloading](https://dl.acm.org/doi/pdf/10.1145/3447993.3448628) by Zhang, Wuyang, et al., MobiCom 2021
- [Edge assisted real-time object detection for mobile augmented reality](https://dl.acm.org/doi/pdf/10.1145/3300061.3300116) by Liu, Luyang, Hongyu Li, and Marco Gruteser., MobiCom 2019
- [Mistify: Automating dnn model porting for on-device inference at the edge](https://www.usenix.org/system/files/nsdi21-guo.pdf) by Guo, Peizhen, Bo Hu, and Wenjun Hu., NSDI 2021
- [AdaptiveNet: Post-deployment Neural Architecture Adaptation for Diverse Edge Environments](https://arxiv.org/pdf/2303.07129.pdf) by Wen, Hao, et al., MobiCom 2023### Concurrent DNN Inference
- [VELTAIR: towards high-performance multi-tenant deep learning services via adaptive compilation and scheduling](https://dl.acm.org/doi/pdf/10.1145/3503222.3507752?casa_token=4WEkiHRYJHEAAAAA:Ae8yvTck-swW5LDJ3Cx3spak5Q2IzfRIVvPAvEG3zHkCudGBF0R4-XxeJk1hBaS4LmzCmxaAqNenCg) by Liu, Zihan, et al., ASPLOS 2021
- [RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms](https://dl.acm.org/doi/pdf/10.1145/3485730.3485938?casa_token=gmqsW0h-7TUAAAAA:MqWvebvOkaT0kCORWXPCoIN5VEN0EBToR36zucKe63d1Exf9m-a5H8ebHVO2-OZZh6YB7DzvytW8QQ) by Ling, Neiwen, et al., SenSys 2021
- [Horus: Interference-aware and prediction-based scheduling in deep learning systems](https://ieeexplore.ieee.org/iel7/71/4359390/09428512.pdf) by Yeung, Gingfung, et al., IEEE TPDS 2021
- [Automated Runtime-Aware Scheduling for Multi-Tenant DNN Inference on GPU](https://ieeexplore.ieee.org/iel7/9643423/9643432/09643501.pdf) by Yu, Fuxun, et al., ICCAD 2021
- [Interference-aware scheduling for inference serving](https://dl.acm.org/doi/pdf/10.1145/3437984.3458837?casa_token=CWMAG53X-EoAAAAA:FXA3ZHvAzasGqkaUPoVoXNREe1qEzYkaFQramYjfG_mu0MjJVJdQzH_IjBPGAIuhkmq9CgPuAQ) by Mendoza, Daniel, et al., EuroMLSys 2021
- [Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences](https://www.usenix.org/system/files/osdi22-han.pdf) by Han, Mingcong, et al., OSDI 2022
- [Planaria: Dynamic architecture fission for spatial multi-tenant acceleration of deep neural networks](https://ieeexplore.ieee.org/iel7/9251289/9251849/09251939.pdf?casa_token=JK4fOIekLU0AAAAA:zLGfIHmDMqPICBSEjAYEa1xHuFRBXTN4Kc-bjO8eZD-VhVIuNlV2B_UCCSXdFY-bWUSOC1xbJqM) by Ghodrati, Soroush, et al., MICRO 2020
- [Heimdall: mobile GPU coordination platform for augmented reality applications](https://dl.acm.org/doi/pdf/10.1145/3372224.3419192?casa_token=TDdZgOLYfioAAAAA:w_HWQIpOiic498lYa-z6kRUYp4RxS92RiVoxNP6P6vBR7QvK2wyAYS4h77wEIh9ogv6B1n29zwfedw) by Yi, Juheon, and Youngki Lee., MobiCom 2020
- [Deepeye: Resource efficient local execution of multiple deep vision models using wearable commodity hardware](https://dl.acm.org/doi/pdf/10.1145/3081333.3081359) by Mathur, Akhil, et al., MobiSys 2017
- [PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications](https://www.usenix.org/system/files/osdi20-bai.pdf) by Bai, Zhihao, et al., OSDI 2020
- [Enable simultaneous DNN services based on deterministic operator overlap and precise latency prediction](https://dl.acm.org/doi/pdf/10.1145/3458817.3476143) by Cui, Weihao, et al., SC 2021
- [LegoDNN: block-grained scaling of deep neural networks for mobile vision](https://dl.acm.org/doi/abs/10.1145/3447993.3483249) by Han, Rui, et al., MobiCom 2021
- [NeuOS: A Latency-Predictable Multi-Dimensional Optimization Framework for DNN-driven Autonomous Systems](https://www.usenix.org/system/files/atc20-bateni.pdf) by Bateni, Soroush, and Cong Liu., ATC 2020
- [Multi-Neural Network Acceleration Architecture](https://ieeexplore.ieee.org/iel7/9136582/9138908/09138929.pdf) by Baek, Eunjin, Dongup Kwon, and Jangwoo Kim., ISCA 2020
- [Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time inference](https://ieeexplore.ieee.org/iel7/9040680/9052112/09052147.pdf) by Xiang, Yecheng, and Hyoseung Kim., RTSS 2019
- [Nestdnn: Resource-aware multi-tenant on-device deep learning for continuous mobile vision](https://dl.acm.org/doi/pdf/10.1145/3241539.3241559) by Fang, Biyi, Xiao Zeng, and Mi Zhang., MobiCom 2018
- [Flep: Enabling flexible and efficient preemption on gpus](https://dl.acm.org/doi/pdf/10.1145/3093336.3037742) by Wu, Bo, et al., ASPLOS 2017
- [Prophet: Precise qos prediction on non-preemptive accelerators to improve utilization in warehouse-scale computers](https://dl.acm.org/doi/pdf/10.1145/3037697.3037700) by Chen, Quan, et al., ASPLOS 2017
- [PAME: precision-aware multi-exit DNN serving for reducing latencies of batched inferences](https://dl.acm.org/doi/pdf/10.1145/3524059.3532366?casa_token=D31LanqCaE4AAAAA:BSK0aEULjkZAYdi0H6Xionzf1MkbCSxVoKlZJNKkGbpTdGf2iJ3mBxBGmERIU4toYqSlVcDKyA) by Zhang, Shulai, et al., ICS 2022
- [Layerweaver: Maximizing resource utilization of neural processing units via layer-wise scheduling](https://ieeexplore.ieee.org/iel7/9406784/9407034/09407236.pdf) by Oh, Young H., et al., HPCA 2021
- [LiteReconfig: cost and content aware reconfiguration of video object detection systems for mobile GPUs](https://dl.acm.org/doi/pdf/10.1145/3492321.3519577) by Xu, Ran, et al., EuroSys 2022
- [ApproxNet: Content and contention-aware video object classification system for embedded clients](https://dl.acm.org/doi/pdf/10.1145/3463530) by Xu, Ran, et al.
- [Accelerating deep learning workloads through efficient multi-model execution](https://deepakn94.github.io/assets/papers/modelbatch-neurips18.pdf) by Narayanan, Deepak, et al., NeurIPS Workshop 2018
- [OLPart: Online Learning based Resource Partitioning for Colocating Multiple Latency-Critical Jobs on Commodity Computers](https://dl.acm.org/doi/pdf/10.1145/3552326.3567490?casa_token=3PdGx37tAzIAAAAA:VyjKzZA3FTV6uJDh5BD7E_Twr6jX1-UHFddSx-znCxT50YVXoii9zDF-bjUNg37CR94y03taeRjI2tM) by Chen, Ruobing, et al., EuroSys 2023
- [MoCA: Memory-Centric, Adaptive Execution for Multi-Tenant Deep Neural Networks](https://ieeexplore.ieee.org/iel7/10070856/10070923/10071035.pdf?casa_token=6JLQ2NjMcacAAAAA:wvMK9Nc3ypNuG1-UVkCD7Fcto3Ycjq6sICWoaHA8nFoHHIuwqp8lj79J02Fv9gA-zCR-wYHveQ4) by Kim, Seah, et al., HPCA 2023
- [Decentralized Application-Level Adaptive Scheduling for Multi-Instance DNNs on Open Mobile Devices](https://www.usenix.org/system/files/atc23-sung.pdf) by Sung, Hsin-Hsuan, et al., ATC 2023### Heterogeneous Platforms
- [Lalarand: Flexible layer-by-layer cpu/gpu scheduling for real-time dnn tasks](https://ieeexplore.ieee.org/iel7/9622323/9622324/09622325.pdf?casa_token=HtllgvtNt8wAAAAA:hasDDmtMmf8uVWgtrevp1XT2Ldh4u-0bWMjup4VPqT1PsCbq77cgwOMOAeAboXs_J_Goklo) by Kang, Woosung, et al., RTSS 2021
- [DUET: A Compiler-Runtime Subgraph Scheduling Approach for Tensor Programs on a Coupled CPU-GPU Architecture](https://dl.acm.org/doi/pdf/10.1145/3442442.3452297?casa_token=rNEtNHavbREAAAAA:U4wL45EN3WD8dh_CW41BVZSAcdKCzDO1KRvNRJsCIMTk6SoeaUa2NvvosOkN6vLnCLcZHt7sMg) by Zhang, Minjia, Zehua Hu, and Mingqin Li., IPDPS 2021
- [Band: coordinated multi-DNN inference on heterogeneous mobile processors](https://dl.acm.org/doi/pdf/10.1145/3498361.3538948) by Jeong, Joo Seong, et al., MobiSys 2022
- [ODMDEF: On-Device Multi-DNN Execution Framework Utilizing Adaptive Layer-Allocation on General Purpose Cores and Accelerator](https://ieeexplore.ieee.org/iel7/6287639/9312710/09453793.pdf) by Lim, Cheolsun, and Myungsun Kim., IEEE ACCESS 2021
- [μlayer: Low latency on-device inference using cooperative single-layer acceleration and processor-friendly quantization](https://dl.acm.org/doi/pdf/10.1145/3302424.3303950) by Kim, Youngsok, et al., EuroSys 2019
- [OPTiC: Optimizing collaborative CPU–GPU computing on mobile devices with thermal constraints](https://ieeexplore.ieee.org/iel7/43/6917053/08477038.pdf) by Wang, Siqi, Gayathri Ananthanarayanan, and Tulika Mitra., TCAD 2019
- [Accelerating Sequence-to-Graph Alignment on Heterogeneous Processors](https://dl.acm.org/doi/pdf/10.1145/3472456.3472505) by Feng, Zonghao, and Qiong Luo., ICPP 2021
- [Efficient Execution of Deep Neural Networks on Mobile Devices with NPU](https://dl.acm.org/doi/pdf/10.1145/3412382.3458272) by Tan, Tianxiang, and Guohong Cao., IPSN 2021
- [CoDL: efficient CPU-GPU co-execution for deep learning inference on mobile devices](https://www.microsoft.com/en-us/research/uploads/prod/2022/05/mobisys22-CoDL__Efficient_CPU_GPU_Co_execution_for_DL_Model_Inference_on_Mobile_Devices-4.pdf) by Jia, Fucheng, et al., MobiSys 2022
- [Coda: Improving resource utilization by slimming and co-locating dnn and cpu jobs](https://ieeexplore.ieee.org/iel7/9355572/9355578/09355823.pdf) by Zhao, Han, et al. ICDCS 2020### HPC and Archs
- [GPUReplay: a 50-KB GPU stack for client ML](https://dl.acm.org/doi/pdf/10.1145/3503222.3507754) by Park, Heejin, and Felix Xiaozhu Lin., ASPLOS 2022
- [Real-time high performance computing using a Jetson Xavier AGX](https://hal.archives-ouvertes.fr/hal-03693764/document) by Cetre, Cyril, et al., ERTS 2022
- [GPU scheduling on the NVIDIA TX2: Hidden details revealed](https://ieeexplore.ieee.org/iel7/8272883/8277266/08277284.pdf) by Amert, Tanya, et al., RTSS 2017
- [Nimble: Lightweight and parallel gpu task scheduling for deep learning](https://proceedings.neurips.cc/paper/2020/file/5f0ad4db43d8723d18169b2e4817a160-Paper.pdf) by Kwon, Woosuk, et al., NeurIPS 2020
- [Addressing GPU on-chip shared memory bank conflicts using elastic pipeline](https://link.springer.com/content/pdf/10.1007/s10766-012-0201-1.pdf) by Gou, Chunyang, and Georgi N. Gaydadjiev., IJPP 2013
- [A study of persistent threads style GPU programming for GPGPU workloads](https://ieeexplore.ieee.org/iel5/6330715/6339585/06339596.pdf) by Gupta, Kshitij, Jeff A. Stuart, and John D. Owens., IEEE 2012
- [Demystifying the placement policies of the NVIDIA GPU thread block scheduler for concurrent kernels](https://dl.acm.org/doi/pdf/10.1145/3453953.3453972) by Gilman, Guin, et al., ACM SIGMETRICS Performance Evaluation Review 2021
- [Exploiting Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks](https://ieeexplore.ieee.org/iel7/9643591/9643617/09643686.pdf) by Zhao, Han, et al., ICDC 2021
- [Online Thread Auto-Tuning for Performance Improvement and Resource Saving](https://ieeexplore.ieee.org/iel7/71/4359390/09762963.pdf) by Luan, Guangqiang, et al., IEEE TPDS 2021
- [Hsm: A hybrid slowdown model for multitasking gpus](https://dl.acm.org/doi/pdf/10.1145/3373376.3378457) by Zhao, Xia, Magnus Jahre, and Lieven Eeckhout., ASPLOS 2020
- [Enabling and exploiting flexible task assignment on GPU through SM-centric program transformations](https://dl.acm.org/doi/pdf/10.1145/2751205.2751213) by Wu, Bo, et al., ACM ICS 2015
- [Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource Partitioning for GPU Multiprogramming](https://ieeexplore.ieee.org/iel7/7551325/7551326/07551396.pdf) by Xu, Qiumin, et al., ISCA 2016
- [Kernelet: High-Throughput GPU Kernel Executions with Dynamic Slicing and Scheduling](https://ieeexplore.ieee.org/iel7/71/4359390/06624111.pdf) by Zhong, Jianlong, and Bingsheng He. IEEE TPDS 2013
- [Improving GPGPU concurrency with elastic kernels](https://dl.acm.org/doi/pdf/10.1145/2490301.2451160) by Pai, Sreepathi, Matthew J. Thazhuthaveetil, and Ramaswamy Govindarajan., ACM SIGARCH Computer Architecture News 2013
- [Neither More Nor Less: Optimizing Thread-level Parallelism for GPGPUs](https://ieeexplore.ieee.org/iel7/6603429/6618788/06618813.pdf) Kayıran, Onur, et al. ICPCT 2013
- [Orion: A framework for gpu occupancy tuning](https://dl.acm.org/doi/pdf/10.1145/2988336.2988355) by Hayes, Ari B., et al., International Middleware Conference. 2016
- [Efficient performance estimation and work-group size pruning for OpenCl kernels on GPUs](https://ieeexplore.ieee.org/iel7/71/4359390/08928962.pdf) by Wang, Xiebing, et al., IEEE TPDS 2019
- [Online evolutionary batch size orchestration for scheduling deep learning workloads in GPU clusters](https://dl.acm.org/doi/pdf/10.1145/3458817.3480859) by Bian, Zhengda, et al., SC 2021
- [Autotuning GPU kernels via static and predictive analysis](https://ieeexplore.ieee.org/iel7/8023017/8025263/08025326.pdf) by Lim, Robert, Boyana Norris, and Allen Malony., IEEE ICPP 2017
- [Gslice: controlled spatial sharing of gpus for a scalable inference platform](https://dl.acm.org/doi/pdf/10.1145/3419111.3421284) by Dhakal, Aditya, Sameer G. Kulkarni, and K. K. Ramakrishnan., SOCC 2020
- [Fractional GPUs: Software-based compute and memory bandwidth reservation for GPUs](https://ieeexplore.ieee.org/iel7/8738782/8743157/08743200.pdf) by Jain, Saksham, et al., RTAS 2019
- [Effisha: A software framework for enabling effficient preemptive scheduling of gpu](https://dl.acm.org/doi/pdf/10.1145/3018743.3018748) by Chen, Guoyang, et al., PPoPP 2017
- [Automatic thread-block size adjustment for memory-bound BLAS kernels on GPUs](https://scholar.google.com/scholar?output=instlink&q=info:bwsEVr7reLMJ:scholar.google.com/&hl=en&as_sdt=0,5&scillfp=9726475852967981232&oi=lle) by Mukunoki, Daichi, Toshiyuki Imamura, and Daisuke Takahashi., MCSOC 2016
- [FlexSched: Efficient scheduling techniques for concurrent kernel execution on GPUs](https://link.springer.com/article/10.1007/s11227-021-03819-z) by López-Albelda, Bernabé, et al., The Journal of Supercomputing 2022
- [Simultaneous multikernel GPU: Multi-tasking throughput processors via fine-grained sharing](https://ieeexplore.ieee.org/iel7/7440961/7446041/07446078.pdf) Wang, Zhenning, et al., HPCA 2016
- [Optimum: Runtime Optimization for Multiple Mixed Model Deployment Deep Learning Inference](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4305614) by Kaicheng, Guo, et al., preprint 2022
- [Exploring AMD GPU scheduling details by experimenting with “worst practices”](https://dl.acm.org/doi/pdf/10.1145/3453417.3453432) by Otterness, Nathan, and James H. Anderson., RTNS 2021
- [Making Powerful Enemies on NVIDIA GPUs](https://ieeexplore.ieee.org/iel7/9984704/9984706/09984754.pdf) by Yandrofski, Tyler, et al., RTSS 2022
- [Contention-Aware GPU Partitioning and Task-to-Partition Allocation for Real-Time Workloads](https://dl.acm.org/doi/pdf/10.1145/3453417.3453439) by Zahaf, Houssam-Eddine, et al., RTNS 2021
- [PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications](https://www.usenix.org/system/files/osdi20-bai.pdf) by Bai, Zhihao, et al., OSDI 2020
- [Beware of Fragmentation: Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent](https://www.usenix.org/system/files/atc23-weng.pdf) by Weng, Qizhen, et al., ATC 2023
- [VectorVisor: A Binary Translation Scheme for Throughput-Oriented GPU Acceleration](https://www.usenix.org/system/files/atc23-ginzburg.pdf) by Ginzburg, Samuel, Mohammad Shahrad, and Michael J. Freedman., ATC 2023
- [Arbitor: A Numerically Accurate Hardware Emulation Tool for DNN Accelerators](https://www.usenix.org/system/files/atc23-jiang-chenhao.pdf) by Jiang, Chenhao, et al., ATC 2023### Latency Predictor
- [MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge](https://arxiv.org/pdf/2205.12660) by Abbasi, Saad, Alexander Wong, and Mohammad Javad Shafiee., arxiv 2022
- [MAPLE-Edge: A Runtime Latency Predictor for Edge Devices](https://openaccess.thecvf.com/content/CVPR2022W/EVW/papers/Nair_MAPLE-Edge_A_Runtime_Latency_Predictor_for_Edge_Devices_CVPRW_2022_paper.pdf) by Nair, Saeejith, et al., CVPR 2022
- [Maple: Microprocessor a priori for latency estimation](https://openaccess.thecvf.com/content/CVPR2022W/ECV/papers/Abbasi_MAPLE_Microprocessor_a_Priori_for_Latency_Estimation_CVPRW_2022_paper.pdf) by Abbasi, Saad, Alexander Wong, and Mohammad Javad Shafiee., CVPR 2022
- [nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices](https://dl.acm.org/doi/pdf/10.1145/3458864.3467882?casa_token=XqdJMALxIdkAAAAA:VhfaRoo7fWSlLOERqfqPcTjW4NfsBB0EXG7AKTw-s_eUFjMscdzTK6oU1kAPREY6nlF2jqO43PTk6g) by Zhang, Li Lyna, et al., MobiSys 2021
- [Predicting and reining in application-level slowdown on spatial multitasking GPUs](https://www.sciencedirect.com/science/article/pii/S0743731519307361) by Wei, Mengze, et al., JPDC 2020
- [A model-based software solution for simultaneous multiple kernels on GPUs](https://dl.acm.org/doi/pdf/10.1145/3377138) by Wu, Hao, et al., TACO 2020
- [Smcompactor: a workload-aware fine-grained resource management framework for gpgpus](https://dl.acm.org/doi/pdf/10.1145/3412841.3441989) by Chen, Qichen, et al., SAC 2021
- [Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training](https://www.usenix.org/system/files/atc21-yu.pdf) by Geoffrey, X. Yu, et al., ATC 2021### TinyML
- [Mcunet: Tiny deep learning on iot devices](https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf) by Lin, Ji, et al. , NeurIPS 2020
- [TinyML: Current Progress, Research Challenges, and Future Roadmap](https://ieeexplore.ieee.org/iel7/9585997/9586083/09586232.pdf?casa_token=OkZ2VanNSfoAAAAA:VepU071luwbGdzcLFA_4bHRlLXZ-CRo2Xwsw-7kLKF8BBLw_2eI83V52l8kc8XP93MwUwHxArgI) by Shafique, Muhammad, et al., DAC 2021
- [Benchmarking TinyML systems: Challenges and direction](https://arxiv.org/pdf/2003.04821) by Banbury, Colby R., et al., arxiv 2020
- [μNAS: Constrained Neural Architecture Search for Microcontrollers](https://dl.acm.org/doi/pdf/10.1145/3437984.3458836) by Liberis, Edgar, Łukasz Dudziak, and Nicholas D. Lane., EuroMLSys 2021
- [Memory-efficient Patch-based Inference for Tiny Deep Learning](https://proceedings.neurips.cc/paper/2021/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf) by Lin, Ji, et al., NeurIPS 2021
- [Deep Learning on Microcontrollers: A Study on Deployment Costs and Challenge](https://dl.acm.org/doi/pdf/10.1145/3517207.3526978) by Filip Svoboda, Javier Fernandez-Marques, Edgar Liberis, Nicholas D Lane, EuroMLSys 2022
- [Space-Efficient TREC for Enabling Deep Learning on Microcontrollers](https://dl.acm.org/doi/pdf/10.1145/3582016.3582062?casa_token=dEzMFkqOBvAAAAAA:EWjdKC4uNQM7ayLGV0J9H3zQg3jti4ZnShLmETkpl7GPQDbmw4jrlxZGLNhrmyNL8pHunWDDlKmuvAo) by Liu, Jiesong, et al., ASPLOS 2023
- [Yono: Modeling multiple heterogeneous neural networks on microcontrollers](https://ieeexplore.ieee.org/iel7/9825912/9825917/09826043.pdf?casa_token=k5oKn7qI7AQAAAAA:YKeA1otIyDcSKSupRgdxKbjpastklsMvSerieUkQOKpHk1QakPGmw49aQtTnyw2ExWX-HuLDfUs) by Kwon, Young D., Jagmohan Chauhan, and Cecilia Mascolo, IPSN 2022### Multi-modality Inference
- [Dynamic Multimodal Fusion](https://arxiv.org/abs/2204.00102) by Xue, Zihui, and Radu Marculescu., arxiv 2022
- [LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision, and Action](https://arxiv.org/pdf/2207.04429) by Shah, Dhruv, et al., arxiv 2022
- [Accelerating mobile audio sensing algorithms through on-chip gpu offloading](https://dl.acm.org/doi/pdf/10.1145/3081333.3081358) by Georgiev, Petko, et al., MobiSys 2017
- [Enabling Edge Devices that Learn from Each Other: Cross Modal Training for Activity Recognition](https://dl.acm.org/doi/pdf/10.1145/3213344.3213351) by Xing, Tianwei, et al., EdgeSys 2018### Sparse Inference
- [SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute](https://www.usenix.org/system/files/osdi22-zheng-ningxin.pdf) by Zheng, Ningxin, et al., OSDI 2022
- [ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition](https://dl.acm.org/doi/pdf/10.1145/3466752.3480043) by Li, Shiyu, et al., MICRO 2021
- [A high-performance sparse tensor algebra compiler in Multi-Level IR](https://arxiv.org/pdf/2102.05187) by Tian, Ruiqin, et al., arxiv 2021
- [Efficient Sparse Matrix Kernels based on Adaptive Workload-Balancing and Parallel-Reduction](https://arxiv.org/pdf/2106.16064) by Huang, Guyue, et al., arxiv 2021
- [COEXE: An Efficient Co-execution Architecture for Real-Time Neural Network Services](https://ieeexplore.ieee.org/iel7/9211868/9218488/09218740.pdf) by Liu, Chubo, et al., DAC 2020
- [TorchSparse: Efficient Point Cloud Inference Engine](https://proceedings.mlsys.org/paper/2022/file/6512bd43d9caa6e02c990b0a82652dca-Paper.pdf) by Tang, Haotian, et al., MLSys 2022### Privacy-aware Inference
- [SecureTVM: A TVM-Based Compiler Framework for Selective Privacy-Preserving Neural Inference](https://dl.acm.org/doi/pdf/10.1145/3579049) by Huang, Po-Hsuan, et al., TODAES 2023
- [PolyMPCNet: Towards ReLU-free Neural Architecture Search in Two-party Computation Based Private Inference](https://arxiv.org/pdf/2209.09424) by Peng, Hongwu, et al., arxiv 2023
- [Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference](https://www.usenix.org/system/files/sec22fall_huang-zhicong.pdf) by Huang, Zhicong, et al., IACR Cryptol 2022### Distributed Inference
- [Exploring Collaborative Distributed Diffusion-Based AI-Generated Content (AIGC) in Wireless Networks](https://arxiv.org/pdf/2304.03446) by Du, Hongyang, et al., arxiv 2023
- [Distributed inference with deep learning models across heterogeneous edge devices](https://ieeexplore.ieee.org/iel7/9796607/9796652/09796896.pdf?casa_token=Yes91Ag1KIYAAAAA:x7nctoSMgomUb27jn0lErJwVq6i45TDTMxoB489_D04OFxVVMAxwDZGw25wNGThaG9ikYdlqndk) by Hu, Chenghao, and Baochun Li., INFOCOM 2022
- [ARK: GPU-driven Code Execution for Distributed Deep Learning](https://www.usenix.org/system/files/nsdi23-hwang.pdf) by Hwang, Changho, et al., NSDI 2023
- [On Modular Learning of Distributed Systems for Predicting {End-to-End} Latency](https://www.usenix.org/system/files/nsdi23-liang-chieh-jan.pdf) by Liang, Chieh-Jan Mike, et al., NSDI 2023### Other Cool Ideas
- [Understanding and Optimizing Deep Learning Cold-Start Latency on Edge Devices](https://arxiv.org/pdf/2206.07446) by Yi, Rongjie, et al., arxiv 2022
- [Towards efficient vision transformer inference: a first study of transformers on mobile devices](https://dl.acm.org/doi/pdf/10.1145/3508396.3512869) by Wang, Xudong, et al., HotMobile 2022
- [Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference](https://dl.acm.org/doi/pdf/10.1145/3466752.3480095) by Tambe, Thierry, et al., MICRO 2021
- [EDGEWISE: A Better Stream Processing Engine for the Edge](https://www.usenix.org/system/files/atc19-fu.pdf) by Fu, Xinwei, et al., ATC 2019
- [LiteFlow: towards high-performance adaptive neural networks for kernel datapath](https://cse.hkust.edu.hk/~kaichen/papers/liteflow-sigcomm22.pdf) by Zhang, Junxue, et al., SIGCOMM 2022
- [CoCoPIE: Making Mobile AI Sweet As PIE--Compression-Compilation Co-Design Goes a Long Way](https://arxiv.org/pdf/2003.06700) by Liu, Shaoshan, et al., arxiv 2020
- [Beyond Data and Model Parallelism for Deep Neural Networks](https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf) by Jia, Zhihao, Matei Zaharia, and Alex Aiken, MLSys 2019
- [Discovering faster matrix multiplication algorithms with reinforcement learning](https://www.nature.com/articles/s41586-022-05172-4) by Fawzi, Alhussein, et al., Nature 2022
- [Gemel: Model Merging for {Memory-Efficient},{Real-Time} Video Analytics at the Edge](https://www.usenix.org/system/files/nsdi23-padmanabhan.pdf) by Padmanabhan, Arthi, et al., NSDI 2023
- [{RECL}: Responsive {Resource-Efficient} Continuous Learning for Video Analytics](https://www.usenix.org/system/files/nsdi23-khani.pdf) by Khani, Mehrdad, et al., NSDI 2023
- [Ekya: Continuous learning of video analytics models on edge compute servers](https://www.usenix.org/system/files/nsdi22-paper-bhardwaj.pdf) by Bhardwaj, Romil, et al., NSDI 2022