Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/LovelyBuggies/Awesome_ML
Some good resources to study machine learning 📖
https://github.com/LovelyBuggies/Awesome_ML
List: Awesome_ML
awesome-list machine-learning
Last synced: 16 days ago
JSON representation
Some good resources to study machine learning 📖
- Host: GitHub
- URL: https://github.com/LovelyBuggies/Awesome_ML
- Owner: LovelyBuggies
- License: mit
- Created: 2021-04-29T04:24:53.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-01-21T03:32:15.000Z (almost 3 years ago)
- Last Synced: 2024-05-23T00:06:58.549Z (7 months ago)
- Topics: awesome-list, machine-learning
- Homepage:
- Size: 6.92 MB
- Stars: 7
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - Awesome_ML - Some good resources to study machine learning 📖. (Other Lists / Monkey C Lists)
README
# Awesome_ML
- Stuffs about Machine Learning.
- List some **interesting** resources to study Machine Learning here.
- Mostly are posts and surveys, but also include interesting discussion and interdisciplinary works.
- Welcome to contribute(**PR**) and please give a reason why it's interesting.**Table of Contents**
- [Awesome_ML](#awesome-ml)
* [Mathematics Basics](#mathematics-basics)
* [Physics Basics](#physics-basics)
* [Tensor Theory](#tensor-theory)
* [Machine Learning Basics](#machine-learning-basics)
* [Computer Vision](#computer-vision)
* [Natural Language Processing](#natural-language-processing)
* [Distributed Deep Learning](#distributed-deep-learning)
* [Control Theory and Reinforcement Learning](#control-theory-and-reinforcement-learning)
* [Adversial Learning and Imitation Learning](#adversial-learning-and-imitation-learning)
* [Opportunities](#opportunities)
* [Miscellaneous](#miscellaneous)## Mathematics Basics
- [fast.ai: numerical-linear-algebra](https://github.com/fastai/numerical-linear-algebra)
- [Einstein Summation in Deep Learning](https://rockt.github.io/2018/04/30/einsum)## Physics Basics
- [QC for ML: A Survey](https://arxiv.org/pdf/2006.12025.pdf), _a great survey_
- [UIUC: QC and Shor's Algorithm](https://quantum-algorithms.herokuapp.com/299/paper/paper.html)
- [IIT: Seminar on Quantum Computing](https://cse.iitkgp.ac.in/~goutam/quantumComputing/index.html), _a brief intro to quantum computing_
- [UT: Quantum Machine Learning(YouTube)](https://www.youtube.com/playlist?list=PLmRxgFnCIhaMgvot-Xuym_hn69lmzIokg)## Tensor Theory
- [MPI: Introduction to Tensors](https://www.mpi-inf.mpg.de/fileadmin/inf/d5/teaching/ws15_16_adamant/tensor_intro.pdf)
- [Tensor Network](https://tensornetwork.org/)
- [Tensors.net](https://www.tensors.net/)
- [Tensor Decompositions and Applications](https://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/Kolda-Bader-SAND2007-6702.pdf)
- [TN VS ML](http://txiang.iphy.ac.cn/mlreview.pdf), _connection between TN and ML_## Machine Learning Basics
To be an expert in a specified field of ML, you must lay a solid foundation of the basics:
- [UCB: ML@Berkley](https://ml.berkeley.edu/blog/)
- [林轩田机器å¦ä¹ 基础(bilibili)](https://www.bilibili.com/video/BV1Cx411i7op?from=search&seid=15028071265755754643)
- [Columbia: CS4771 Machine Learning](http://www.cs.columbia.edu/~verma/classes/ml/index.html)
- [Cheat sheet for Data Scientists](./cheat_sheet_for_Data_Scientists.pdf)## Computer Vision
## Natural Language Processing
## Distributed Deep Learning
- [Ring AllReduce](https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da), _a straightforward tutorial for beginners: share reduce and share only_## Control Theory and Reinforcement Learning
- [UIUC: Calculus of Variations and Optimal Control Theory](http://liberzon.csl.illinois.edu/teaching/cvoc/cvoc.html)
- [Cool Things in Optimal Control and Physics](https://cgliu.github.io/posts/optimal-control/optimization-physics.html#org1237ec1)
- [HJB Equations & Stochastic Differential Equations](https://benjaminmoll.com/wp-content/uploads/2019/07/Lecture4_ECO521_web.pdf), _details about Hamiltonian v.s. Bellman_
- [OpenAI: Spinning Up](https://spinningup.openai.com/en/latest/index.html)
- [Stanford: Reinforcement Learning An Introduction](https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf)
- [UCB: CS294 Deep Reinforcement Learning](http://rail.eecs.berkeley.edu/deeprlcourse-fa17/)
- [强化å¦ä¹ 线路](https://mp.weixin.qq.com/s/E2va_w2Lh_x3n_1XnOY0ZA), _containing some flaws_
- [Policy Gradient Algorithms](https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#what-is-policy-gradient)
- [DRL & Meta-Learning Series](https://jonathan-hui.medium.com/rl-deep-reinforcement-learning-series-833319a95530)
- [Understanding AC Methods](https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f)
- [Distributional RL](https://mtomassoli.github.io/2017/12/08/distributional_rl/)
- [TD error vs advantage vs Bellman error](http://boris-belousov.net/2017/04/29/ergodic-MDP/)## Adversial Learning and Imitation Learning
- [GAN VS Actor-Critic](https://arxiv.org/abs/1610.01945)
- [KD 20篇 paper 回顾](https://zhuanlan.zhihu.com/p/160206075)
- [KD: A Survey](https://arxiv.org/abs/2006.05525)
- [KD and S-T Learning for CV: A Review](https://arxiv.org/abs/2004.05937)## Opportunities
ML is such a promising field that contains a lot of opportunities for students:
- [BAIR](https://bair.berkeley.edu/getting_involved.html)
- [OpenAI Jobs](https://openai.com/jobs/)
- [DeepMind Research Jobs](https://deepmind.com/careers/jobs?teams=Research)
- [Top AI Fellowship](https://towardsdatascience.com/top-ai-fellowship-programs-to-look-out-for-344af565824c)
- [Fellowship & Award Opportunities](http://ml.gatech.edu/content/fellowship-award-opportunities)
- [Open Source Projects](https://github.com/tapaswenipathak/Open-Source-Programs)
- [Apple Career for ML](https://www.apple.com/careers/us/machine-learning-and-ai.html)
- [AIRS Research](https://airs.cuhk.edu.cn/zh-hans/airs/rpositions)
- [IDEA Research](https://idea.edu.cn/)
- [MSRA Jobs](https://www.msra.cn/zh-cn/jobs)
- [Google Research](https://research.google/)
- [Facebook AI](https://ai.facebook.com/)
- [ByteDance AI Lab](https://ailab.bytedance.com/research)
- [Tencent AI Lab](https://ai.tencent.com/ailab/en/index)
- [Amazon Science](https://www.amazon.science/machine-learning)
- [Insight Research Centre](https://www.insight-centre.org/work-with-us/)## Miscellaneous
- [AI Conference Due](https://aideadlin.es/?sub=ML,CV,NLP,RO,SP,DM)
- [Tips for Research](https://ruder.io/10-tips-for-research-and-a-phd/), _a fantastic blog_