Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/MichaelXin/Awesome-Caffe
Awesome Caffe
https://github.com/MichaelXin/Awesome-Caffe
List: Awesome-Caffe
Last synced: 3 months ago
JSON representation
Awesome Caffe
- Host: GitHub
- URL: https://github.com/MichaelXin/Awesome-Caffe
- Owner: MichaelXin
- License: cc0-1.0
- Created: 2016-09-21T01:46:31.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-09-05T06:12:18.000Z (over 5 years ago)
- Last Synced: 2024-05-22T04:00:44.307Z (8 months ago)
- Size: 50.8 KB
- Stars: 220
- Watchers: 25
- Forks: 89
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: contributing.md
- License: LICENSE
Awesome Lists containing this project
- awesomeai - Caffe
- awesome-ai-awesomeness - Caffe
- awesome-ai-awesomeness - Caffe
- ultimate-awesome - Awesome-Caffe - Awesome Caffe. (Other Lists / Monkey C Lists)
README
# Awesome Caffe [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/jtoy/awesome)
This page contains a curated list of awesome Caffe examples, tutorials and blogs. It is inspired by awesome-php and awesome-machine-learning.
If you think I have missed out on something (or) have any suggestions (papers, implementations and other resources), feel free to pull a request
Feedback and contributions are welcome!
## Table of Contents
- [1. Tutorials](#Tutorials)
- [2. Vision](#Vision)
- [3. NLP](#NLP)
- [4. Speech](#Speech)
- [5. Building Blocks](#Building)
- [6. Tools](#Tools)============================================================================================================
## Books
- [Deep Learning - Ian Goodfellow and Yoshua Bengio and Aaron Courville](http://www.deeplearningbook.org/)
- [Deep Learning (Simplified Chinese)](https://github.com/exacity/deeplearningbook-chinese)## 1. Tutorials
- [DIY Deep Learning for Vision with Caffe](https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p)
- [Tutorial Documentation](http://caffe.berkeleyvision.org/tutorial/)
- [Tutorial Documentation (Simplified Chinese)](http://caffecn.cn/?/page/tutorial)## 2. Vision
>> ### 2.1 Image Classification
>> - [ResNet-v3](https://github.com/terrychenism/ResNeXt)
>> - [denseNet](https://github.com/liuzhuang13/DenseNet)
>> - [Deep Residual Networks](https://github.com/KaimingHe/deep-residual-networks)
>> - [Highway Networks](https://github.com/flukeskywalker/highway-networks)
>> - [Deep-Compression-AlexNet](https://github.com/songhan/Deep-Compression-AlexNet)
>> - [SqueezeNet](https://github.com/DeepScale/SqueezeNet)
>> - [GoogleNet-V2](https://github.com/lim0606/caffe-googlenet-bn)
>> - [Oriented Response Networks](https://github.com/ZhouYanzhao/ORN)>> ### 2.2 Object Detection
>> - [PVANet](https://github.com/sanghoon/pva-faster-rcnn)
>> - [R-FCN](https://github.com/Orpine/py-R-FCN)
>> - [SSD: Single Shot MultiBox Detector](https://github.com/weiliu89/caffe/tree/ssd)
>> - [YOLO in caffe](https://github.com/xingwangsfu/caffe-yolo)
>> - [DeepBox](https://github.com/weichengkuo/DeepBox)
>> - [Faster R-CNN](https://github.com/rbgirshick/py-faster-rcnn)
>> - [Fast R-CNN](https://github.com/rbgirshick/fast-rcnn)>> ### 2.3 Image Segmentation
>> - [Mask R-CNN](https://github.com/jasjeetIM/Mask-RCNN)
>> - [DeepLab](https://bitbucket.org/aquariusjay/deeplab-public-ver2)
>> - [CRF-RNN](https://github.com/torrvision/crfasrnn)
>> - [SegNet](https://github.com/alexgkendall/caffe-segnet)
>> - [DeconvNet: Learning Deconvolution Network for Semantic Segmentation](https://github.com/HyeonwooNoh/DeconvNet)
>> - [Fully Convolutional Networks for Semantic Segmentation](https://github.com/shelhamer/fcn.berkeleyvision.org)>> ### 2.4 Face Detection / Recognition / Verification
>> - [Center Loss](https://github.com/ydwen/caffe-face)
>> - [MTCNN_face_detection_alignment](https://github.com/DaFuCoding/MTCNN_Caffe)
>> - [VGG-Face](http://www.robots.ox.ac.uk/~vgg/software/vgg_face/)
>> - [TripletLoss(FaceNet)](https://github.com/pinguo-luhaofang/tripletloss)
>> - [dockerface](https://github.com/natanielruiz/dockerface) - Easy to install and use deep learning Faster R-CNN face detection for images and video in a docker container.>> ### 2.5 Action Recognition
>> - [UntrimmedNets](https://github.com/wanglimin/UntrimmedNet)
>> - [C3D](https://github.com/chuckcho/video-caffe) (a recent version of Caffe)
>> - [TDD](https://github.com/wanglimin/TDD)
>> - [LRCN](https://github.com/LisaAnne/lisa-caffe-public/tree/lstm_video_deploy)>> ### 2.6 Object Tracking
>> - [FCNT](https://github.com/scott89/FCNT)>> ### 2.7 Scene Classification
>> - [Places CNN](http://places.csail.mit.edu/downloadCNN.html)>> ### 2.8 Image Super-resolution
>> - [SRCNN](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)>> ### 2.9 Images Generation
>> - [cnn-vis](https://github.com/jcjohnson/cnn-vis)
>> - [style-transfer](https://github.com/fzliu/style-transfer)
>> - [Colorful Image Colorization](https://github.com/richzhang/colorization)
>> - [Coupled Face Generation](https://github.com/mingyuliutw/CoGAN)>> ### 2.10 Self-driving
>> - [DeepDrive](http://deepdrive.io/)
>> - [Berkeley DeepDrive](http://bdd.berkeley.edu/)
>> - [Princeton deepdriving](http://deepdriving.cs.princeton.edu/)>> ### 2.11 Reinforcement Learning
>> - [DRQN](https://github.com/mhauskn/dqn)
>> - [DQN](https://github.com/muupan/dqn-in-the-caffe)>> ## 2.12 Image Generation
>> - [VAE](https://github.com/cdoersch/vae_tutorial)## 5. Building Blocks
>> ### 5.1 Initialization
>> - [k-means initialization](https://github.com/philkr/magic_init)
>> - [LSUV](https://github.com/ducha-aiki/LSUVinit)>> ### 5.2 Activation Function
>> TODO## 6. Tools
>> ### 6.1 Converter
>> - [caffe-tensorflow](https://github.com/ethereon/caffe-tensorflow)
>> - [caffe-theano-conversion](https://github.com/kitofans/caffe-theano-conversion)
>> - [CaffeToKeras](https://github.com/MarcBS/keras)>> ### 6.2 Labeling
>> - [labelme](https://github.com/wkentaro/labelme)
>> - [LabelImg](https://github.com/tzutalin/labelImg)
>> - [BBox-Label-Tool](https://github.com/puzzledqs/BBox-Label-Tool)
>> - [FastAnnotationTool](https://github.com/christopher5106/FastAnnotationTool)>> ### 6.3 Data Augmentation
>> - [Augmentor](https://github.com/mdbloice/Augmentor)>> ### 6.4 Parameter Search
>> - [Spearmint](https://github.com/kuz/caffe-with-spearmint)>> ### 6.5 Visualization
>> - [netron](https://github.com/lutzroeder/netron)
>> - [deep-visualization-toolbox](https://github.com/yosinski/deep-visualization-toolbox)
>> - [DeepDraw](https://github.com/auduno/deepdraw)>> ### 6.6 Mobile Platform
>> - [ncnn](https://github.com/Tencent/ncnn)
>> - [ShuffleNet](https://github.com/farmingyard/ShuffleNet)
>> - [caffe-android-lib](https://github.com/sh1r0/caffe-android-lib)
>> - [caffe-ios](https://github.com/aleph7/caffe/)
>> - [windows](https://github.com/dlunion/CC4.0)>> ### 6.7 Intel and AMD
>> - [hipCaffe-AMD’s Radeon Instinct GPUs](https://github.com/ROCmSoftwarePlatform/hipCaffe)
>> - [Intel® Xeon Phi™](https://software.intel.com/en-us/articles/caffe-optimized-for-intel-architecture-applying-modern-code-techniques)
>> - [OpenCL-caffe](https://github.com/amd/OpenCL-caffe)
>> - [SkimCaffe](https://github.com/IntelLabs/SkimCaffe)>> ### 6.8 Parallel and Distributed computing
>> - [A multi-GPU and memory-reduced MAT-Caffe](https://github.com/sciencefans/CaffeMex_v2)
>> - [SparkNet](https://github.com/amplab/SparkNet)
>> - [CaffeOnSpark](https://github.com/yahoo/CaffeOnSpark)
>> - [petuum/bosen ](https://github.com/petuum/bosen)>> ### 6.9 Net Builder
>> - [pynetbuilder](https://github.com/jay-mahadeokar/pynetbuilder)