Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/NEUChatbot/awesome-neuchatbot
Series of documents for chatbot development.
https://github.com/NEUChatbot/awesome-neuchatbot
List: awesome-neuchatbot
Last synced: 16 days ago
JSON representation
Series of documents for chatbot development.
- Host: GitHub
- URL: https://github.com/NEUChatbot/awesome-neuchatbot
- Owner: NEUChatbot
- Created: 2018-03-16T14:50:24.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-04-04T09:13:51.000Z (over 6 years ago)
- Last Synced: 2024-05-23T07:49:29.927Z (7 months ago)
- Size: 13.7 KB
- Stars: 2
- Watchers: 6
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-neuchatbot - Series of documents for chatbot development. (Other Lists / PowerShell Lists)
README
# Awesome NEU Chatbot [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/NEUChatbot/awesome-neuchatbot)
## Table of Contents
* **[Free Online Books](#free-online-books)**
* **[Courses](#courses)**
* **[Videos and Lectures](#videos-and-lectures)**
* **[Papers](#papers)**
* **[Tutorials](#tutorials)**
* **[WebSites](#websites)**
* **[Datasets](#datasets)**
* **[Conferences](#Conferences)**
* **[Frameworks](#frameworks)**
* **[Miscellaneous](#miscellaneous)**
* **[Contributing](#contributing)**
### Free Online Books1. [Deep Learning](http://www.deeplearningbook.org/) by Yoshua Bengio, Ian Goodfellow and Aaron Courville (05/07/2015)
2. [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/) by Michael Nielsen (Dec 2014)
3. [Deep Learning](http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf) by Microsoft Research (2013)
4. [Deep Learning Tutorial](http://deeplearning.net/tutorial/deeplearning.pdf) by LISA lab, University of Montreal (Jan 6 2015)
5. [neuraltalk](https://github.com/karpathy/neuraltalk) by Andrej Karpathy : numpy-based RNN/LSTM implementation
6. [Deep Learning in Neural Networks: An Overview](http://arxiv.org/pdf/1404.7828v4.pdf)
### Courses1. [Tensorflow for Deep Learning Research](https://web.stanford.edu/class/cs20si/) by Chip Huyen
2. [Machine Learning - Stanford](https://class.coursera.org/ml-005) by Andrew Ng in Coursera (2010-2014)
3. [Machine Learning - Carnegie Mellon](http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml) by Tom Mitchell (Spring 2011)### Videos and Lectures
1. [Deep Learning, Self-Taught Learning and Unsupervised Feature Learning](https://www.youtube.com/watch?v=n1ViNeWhC24) By Andrew Ng
2. [Machine Learning](https://www.youtube.com/watch?v=CXgbekl66jc&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49) By Hung-yi Lee in NTU### Papers
1. [Using Very Deep Autoencoders for Content Based Image Retrieval](http://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf)
2. [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf)
3. [CMU’s list of papers](http://deeplearning.cs.cmu.edu/)
4. [Training Recurrent Neural Networks](http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf)
5. [LSTM](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)
6. [GRU - Gated Recurrent Unit](http://arxiv.org/pdf/1406.1078v3.pdf)
7. [GFRNN](http://arxiv.org/pdf/1502.02367v3.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15-supp.pdf)
8. [LSTM: A Search Space Odyssey](http://arxiv.org/pdf/1503.04069v1.pdf)
9. [A Critical Review of Recurrent Neural Networks for Sequence Learning](http://arxiv.org/pdf/1506.00019v1.pdf)
10. [Visualizing and Understanding Recurrent Networks](http://arxiv.org/pdf/1506.02078v1.pdf)
11. [Recurrent Neural Network based Language Model](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf)
12. [Deep Neural Networks for Acoustic Modeling in Speech Recognition](http://cs224d.stanford.edu/papers/maas_paper.pdf)
13. [Speech Recognition with Deep Recurrent Neural Networks](http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf)
14. [Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation](http://arxiv.org/pdf/1406.1078v3.pdf)
15. [Google - Sequence to Sequence Learning with Neural Networks](http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf)
16. [Ask Me Anything: Dynamic Memory Networks for Natural Language Processing](http://arxiv.org/pdf/1506.07285v1.pdf)
17. [Batch Normalization](https://arxiv.org/abs/1502.03167)
18. [Berkeley AI Research (BAIR) Laboratory](https://arxiv.org/pdf/1611.07004v1.pdf)
19. [On Using Very Large Target Vocabulary for Neural Machine Translation](https://arxiv.org/pdf/1412.2007.pdf)
20. [Attention Is All You Need](https://arxiv.org/pdf/1706.03762.pdf)
### Tutorials1. [A Deep Learning Tutorial: From Perceptrons to Deep Networks](http://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks)
2. [Deep Learning from the Bottom up](http://www.metacademy.org/roadmaps/rgrosse/deep_learning)
3. [Theano Tutorial](http://deeplearning.net/tutorial/deeplearning.pdf)
4. [Torch7 Tutorials](https://github.com/clementfarabet/ipam-tutorials/tree/master/th_tutorials)
5. [TensorFlow tutorials](https://github.com/nlintz/TensorFlow-Tutorials)
6. [More TensorFlow tutorials](https://github.com/pkmital/tensorflow_tutorials)
7. [TensorFlow Python Notebooks](https://github.com/aymericdamien/TensorFlow-Examples)
8. [Keras and Lasagne Deep Learning Tutorials](https://github.com/Vict0rSch/deep_learning)
9. [TensorFlow-World](https://github.com/astorfi/TensorFlow-World)
10. [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python)
11. [Keras Tutorial: Content Based Image Retrieval Using a Convolutional Denoising Autoencoder](https://blog.sicara.com/keras-tutorial-content-based-image-retrieval-convolutional-denoising-autoencoder-dc91450cc511)
12. [Pytorch Tutorial by Yunjey Choi](https://github.com/yunjey/pytorch-tutorial)### WebSites
1. [deeplearning.net](http://deeplearning.net/)
2. [deeplearning.stanford.edu](http://deeplearning.stanford.edu/)
3. [cs.brown.edu/research/ai](http://cs.brown.edu/research/ai/)
4. [eecs.umich.edu/ai](http://www.eecs.umich.edu/ai/)
5. [cs.utexas.edu/users/ai-lab](http://www.cs.utexas.edu/users/ai-lab/)
6. [cs.washington.edu/research/ai](http://www.cs.washington.edu/research/ai/)
7. [aiai.ed.ac.uk](http://www.aiai.ed.ac.uk/)
8. [csail.mit.edu](http://www.csail.mit.edu/)
9. [cgi.cse.unsw.edu.au/~aishare](http://cgi.cse.unsw.edu.au/~aishare/)
10. [cs.rochester.edu/research/ai](http://www.cs.rochester.edu/research/ai/)
11. [ai.sri.com](http://www.ai.sri.com/)
12. [isi.edu/AI/isd.htm](http://www.isi.edu/AI/isd.htm)
13. [hips.seas.harvard.edu](http://hips.seas.harvard.edu/)
14. [AI Weekly](http://aiweekly.co)
15. [stat.ucla.edu](http://www.stat.ucla.edu/~junhua.mao/m-RNN.html)
16. [deeplearning.cs.toronto.edu](http://deeplearning.cs.toronto.edu/i2t)
17. [visualqa.org](http://www.visualqa.org/)
18. [Deep Learning News](http://news.startup.ml/)
19. [Machine Learning is Fun! Adam Geitgey's Blog](https://medium.com/@ageitgey/)
20. [Guide to Machine Learning](http://yerevann.com/a-guide-to-deep-learning/)
21. [Deep Learning for Beginners](https://spandan-madan.github.io/DeepLearningProject/)### Datasets
1. [VQA](http://www.visualqa.org/) VQA is a new dataset containing open-ended questions about images.
2. [Image QA](http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/)
3. [Columbia-Utrecht Reflectance and Texture Database](http://www.cs.columbia.edu/CAVE/curet/) - Texture and reflectance measurements for over 60 samples of 3D texture, observed with over 200 different combinations of viewing and illumination directions. (Formats: bmp)
4. [DeepMind QA Corpus](https://github.com/deepmind/rc-data) - Textual QA corpus from CNN and DailyMail. More than 300K documents in total. [Paper](http://arxiv.org/abs/1506.03340) for reference.
5. [Cornell Movie Dialogs](http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html) - Movie dialogs.
6. [Ubuntu Dialogue Corpus](https://arxiv.org/abs/1506.08909) - Dialogs of ubuntu journal.
7. [OpenSubtitles](http://opus.lingfil.uu.se/OpenSubtitles.php) - Movie subtitles.
8. [Twitter](https://github.com/Marsan-Ma/twitter_scraper) - Dataset from twitter.
9. [Papaya Conversational Data Set](https://github.com/bshao001/ChatLearner) - Reorganized based on Cornell and Reddit.
10. [dgk_shooter_min.conv](https://github.com/rustch3n/dgk_lost_conv) - Chinese movie dialogs.
11. [白鹭时代中文问答语料](https://github.com/Samurais/egret-wenda-corpus) - 白鹭时代论坛问答数据,一个问题对应一个最好的答案。
12. [微博数据集](http://61.93.89.94/Noah_NRM_Data/) - 华为李航实验室发布,也是论文“Neural Responding Machine for Short-Text Conversation”使用的数据集。
13. [微博数据集](http://lwc.daanvanesch.nl/openaccess.php) - 新浪微博数据集,评论回复短句。
### Conferences1. [IJCAI - International Joint Conference on Artificial Intelligence](https://www.ijcai-18.org/)
2. [ICML - International Conference on Machine Learning](https://icml.cc)
3. [ECML - European Conference on Machine Learning](http://www.ecmlpkdd2018.org)
4. [KDD - Knowledge Discovery and Data Mining](http://www.kdd.org/kdd2018/)
5. [NIPS - Neural Information Processing Systems](https://nips.cc/Conferences/2018)
6. [O'Reilly AI Conference - O'Reilly Artificial Intelligence Conference](https://conferences.oreilly.com/artificial-intelligence/ai-ny)
7. [AAAI - Association for the Advancement of Artificial Intelligence](https://www.aaai.org)### Frameworks
1. [Caffe](http://caffe.berkeleyvision.org/)
2. [Torch7](http://torch.ch/)
3. [Theano](http://deeplearning.net/software/theano/)
4. [cuda-convnet](https://code.google.com/p/cuda-convnet2/)
5. [convetjs](https://github.com/karpathy/convnetjs)
5. [Ccv](http://libccv.org/doc/doc-convnet/)
6. [NuPIC](http://numenta.org/nupic.html)
7. [DeepLearning4J](http://deeplearning4j.org/)
8. [Brain](https://github.com/harthur/brain)
9. [DeepLearnToolbox](https://github.com/rasmusbergpalm/DeepLearnToolbox)
10. [Deepnet](https://github.com/nitishsrivastava/deepnet)
11. [Deeppy](https://github.com/andersbll/deeppy)
12. [JavaNN](https://github.com/ivan-vasilev/neuralnetworks)
13. [hebel](https://github.com/hannes-brt/hebel)
14. [Mocha.jl](https://github.com/pluskid/Mocha.jl)
15. [OpenDL](https://github.com/guoding83128/OpenDL)
16. [cuDNN](https://developer.nvidia.com/cuDNN)
17. [MGL](http://melisgl.github.io/mgl-pax-world/mgl-manual.html)
18. [Knet.jl](https://github.com/denizyuret/Knet.jl)
19. [Nvidia DIGITS - a web app based on Caffe](https://github.com/NVIDIA/DIGITS)
20. [Neon - Python based Deep Learning Framework](https://github.com/NervanaSystems/neon)
21. [Keras - Theano based Deep Learning Library](http://keras.io)
22. [Chainer - A flexible framework of neural networks for deep learning](http://chainer.org/)
23. [RNNLM Toolkit](http://rnnlm.org/)
24. [RNNLIB - A recurrent neural network library](http://sourceforge.net/p/rnnl/wiki/Home/)
25. [char-rnn](https://github.com/karpathy/char-rnn)
26. [MatConvNet: CNNs for MATLAB](https://github.com/vlfeat/matconvnet)
27. [Minerva - a fast and flexible tool for deep learning on multi-GPU](https://github.com/dmlc/minerva)
28. [Brainstorm - Fast, flexible and fun neural networks.](https://github.com/IDSIA/brainstorm)
29. [Tensorflow - Open source software library for numerical computation using data flow graphs](https://github.com/tensorflow/tensorflow)
30. [DMTK - Microsoft Distributed Machine Learning Tookit](https://github.com/Microsoft/DMTK)
31. [Scikit Flow - Simplified interface for TensorFlow (mimicking Scikit Learn)](https://github.com/google/skflow)
32. [MXnet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning framework](https://github.com/dmlc/mxnet/)
33. [Veles - Samsung Distributed machine learning platform](https://github.com/Samsung/veles)
34. [Marvin - A Minimalist GPU-only N-Dimensional ConvNets Framework](https://github.com/PrincetonVision/marvin)
35. [Apache SINGA - A General Distributed Deep Learning Platform](http://singa.incubator.apache.org/)
36. [DSSTNE - Amazon's library for building Deep Learning models](https://github.com/amznlabs/amazon-dsstne)
37. [SyntaxNet - Google's syntactic parser - A TensorFlow dependency library](https://github.com/tensorflow/models/tree/master/syntaxnet)
38. [mlpack - A scalable Machine Learning library](http://mlpack.org/)
39. [Torchnet - Torch based Deep Learning Library](https://github.com/torchnet/torchnet)
40. [Paddle - PArallel Distributed Deep LEarning by Baidu](https://github.com/baidu/paddle)
41. [NeuPy - Theano based Python library for ANN and Deep Learning](http://neupy.com)
42. [Lasagne - a lightweight library to build and train neural networks in Theano](https://github.com/Lasagne/Lasagne)
43. [nolearn - wrappers and abstractions around existing neural network libraries, most notably Lasagne](https://github.com/dnouri/nolearn)
44. [Sonnet - a library for constructing neural networks by Google's DeepMind](https://github.com/deepmind/sonnet)
45. [PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration](https://github.com/pytorch/pytorch)
46. [CNTK - Microsoft Cognitive Toolkit](https://github.com/Microsoft/CNTK)
47. [Serpent.AI - Game agent framework: Use any video game as a deep learning sandbox](https://github.com/SerpentAI/SerpentAI)
48. [Caffe2 - A New Lightweight, Modular, and Scalable Deep Learning Framework](https://github.com/caffe2/caffe2)
49. [deeplearn.js - Hardware-accelerated deep learning and linear algebra (NumPy) library for the web](https://github.com/PAIR-code/deeplearnjs)### Miscellaneous
1. [Google Plus - Deep Learning Community](https://plus.google.com/communities/112866381580457264725)
2. [100 Best Github Resources in Github for DL](http://meta-guide.com/software-meta-guide/100-best-github-deep-learning/)
3. [Word2Vec](https://code.google.com/p/word2vec/)
4. [Google deepdream - Neural Network art](https://github.com/google/deepdream)
5. [An efficient, batched LSTM.](https://gist.github.com/karpathy/587454dc0146a6ae21fc)
6. [A recurrent neural network designed to generate classical music.](https://github.com/hexahedria/biaxial-rnn-music-composition)
7. [AlphaGo - A replication of DeepMind's 2016 Nature publication, "Mastering the game of Go with deep neural networks and tree search"](https://github.com/Rochester-NRT/AlphaGo)
8. [Machine Learning for Software Engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers)
9. [Dockerface](https://github.com/natanielruiz/dockerface)-----
### Contributing
Anything in mind that you think is awesome and would fit in this list? Feel free to send a [pull request](https://github.com/NEUChatbot/awesome-neuchatbot/pulls).-----
## License[![CC0](http://i.creativecommons.org/p/zero/1.0/88x31.png)](http://creativecommons.org/publicdomain/zero/1.0/)
To the extent possible under law, [Xingqi Tang](https://www.linkedin.com/in/xingqi-tang-340204144/) has waived all copyright and related or neighboring rights to this work.