Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Orion-AI-Lab/S4A
Sen4AgriNet: A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning
https://github.com/Orion-AI-Lab/S4A
crop-classification deep-learning segmentation sentinel-2
Last synced: about 1 month ago
JSON representation
Sen4AgriNet: A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning
- Host: GitHub
- URL: https://github.com/Orion-AI-Lab/S4A
- Owner: Orion-AI-Lab
- License: mit
- Created: 2021-12-14T17:28:41.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2023-08-08T07:58:22.000Z (over 1 year ago)
- Last Synced: 2024-10-29T22:29:20.439Z (about 2 months ago)
- Topics: crop-classification, deep-learning, segmentation, sentinel-2
- Language: Jupyter Notebook
- Homepage:
- Size: 6.69 MB
- Stars: 88
- Watchers: 6
- Forks: 18
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- open-sustainable-technology - S4A - A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning. (Consumption / Agriculture and Nutrition)
README
## Sen4AgriNet
#### A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning
**Contributors:** [Sykas D.](https://github.com/dimsyk), [Zografakis D.](https://github.com/dimzog), [Sdraka M.](https://github.com/paren8esis)
---
**Supplementary repo with DL experiments using the Sen4AgriNet dataset:** [Sen4AgriNet-Models](https://github.com/Orion-AI-Lab/S4A-Models).
---
This repository provides a native PyTorch Dataset Class for Sen4AgriNet dataset (`patches_dataset.py`). Should work with any new version of PyTorch1.7.1+ and Python3.8.5+.
Dataset heavily relies on [cocoapi](https://github.com/cocodataset/cocoapi) for dataloading and indexing, therefore make sure you have it installed:
```python
pip3 install pycocotools
```Then make sure every other requirement is installed:
```python
pip3 install -r requirements.txt
```### Instructions
In order to use the provided PyTroch Dataset class, the required netCDF files of Sen4AgriNet must be downloaded and placed inside the `dataset/netcdf/` folder. These files are available for download at [Dropbox](https://www.dropbox.com/scl/fo/ne0dpq72gi3ayhqj0hg60/h?dl=0&rlkey=b0148zl6yja7ph26bpfms6knt), [Google Drive](https://drive.google.com/drive/folders/1-qKhlaMUPPI7Th7xTE2vIXY2nIowrSiC?usp=sharing) and [HuggingFace Hub](https://huggingface.co/datasets/paren8esis/S4A) (_experimental_).
Then, three separate COCO files must be created: one for training, one for validation and one for testing. Alternatively, the predefined COCO files for the 3 Scenarios can be downloaded from [here](https://www.dropbox.com/sh/kvgo4r2vin7sbwt/AACzDLNbnSouuZYMk8Y9I4sha?dl=0).
After this initial setup, `patches_dataset.py` can be used in a PyTorch deep learning pipeline to load, prepare and return patches from the dataset according to the split dictated by the COCO files. This Dataset class has the following features:
- Reads the netCDF files of the dataset containing the Sentinel-2 observations over time and the corresponding labels.
- Isolates the Sentinel-2 bands requested by the user.
- Computes the median Sentinel-2 image on a given frequency, e.g. monthly (or loads precomputed medians, if any).
- Returns the timeseries of median images inside a predefined window.
- Normalizes the images.
- Returns hollstein masks for clouds, cirrus, shadow or snow.
- Returns a parcel mask: 1 for parcel, 0 for non-parcel.
- Can alternatively return binary labels: 1 for crops, 0 for non-crops.### Dataset exploration
This is roughly the way that our `patches_dataset.py` works. The whole procedure is also described in the provided [notebook](https://github.com/Orion-AI-Lab/S4A/blob/main/patch_aggregation_visualization.ipynb).
1. Open a netCDF file for exploration.
```python3
import netCDF4
from pathlib import Pathpatch = netCDF4.Dataset(Path('data/2020_31TCG_patch_14_14.nc'), 'r')
patch
```Outputs
```python3
"""root group (NETCDF4 data model, file format HDF5):
title: S4A Patch Dataset
authors: Papoutsis I., Sykas D., Zografakis D., Sdraka M.
patch_full_name: 2020_31TCG_patch_14_14
patch_year: 2020
patch_name: patch_14_14
patch_country_code: ES
patch_tile: 31TCG
creation_date: 27 Apr 2021
references: Documentation available at .
institution: National Observatory of Athens.
version: 21.03
_format: NETCDF4
_nco_version: netCDF Operators version 4.9.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
_xarray_version: 0.17.0
dimensions(sizes):
variables(dimensions):
groups: B01, B02, B03, B04, B05, B06, B07, B08, B09, B10, B11, B12, B8A, labels, parcels
"""
```
2. Visualize a single timestamp.```python3
import xarray as xrband_data = xr.open_dataset(xr.backends.NetCDF4DataStore(patch['B02']))
band_data.B02.isel(time=0).plot()
```
![Single Month](images/single_timestamp.png)3. Visualize the labels:
```python3
labels = xr.open_dataset(xr.backends.NetCDF4DataStore(patch['labels']))
labels.labels.plot()
```
![Labels](images/labels.png)4. Visualize the parcels:
```python3
parcels = xr.open_dataset(xr.backends.NetCDF4DataStore(patch['parcels']))
parcels.parcels.plot()
```
![Parcels](images/parcels.png)5. Plot the median of observations for each month:
```python3
import pandas as pd
# Or maybe aggregate based on a given frequency
# Refer to
# https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
group_freq = '1MS'# Grab year from netcdf4's global attribute
year = patch.patch_year# output intervals
date_range = pd.date_range(start=f'{year}-01-01', end=f'{int(year) + 1}-01-01', freq=group_freq)# Aggregate based on given frequency
band_data = band_data.groupby_bins(
'time',
bins=date_range,
right=True,
include_lowest=False,
labels=date_range[:-1]
).median(dim='time')
```If you plot right now, you might notice that some months are empty:
![Single Month](images/per_month_empty.png)(Optional) Fill in empty months:
```python3
import matplotlib.pyplot as pltband_data = band_data.interpolate_na(dim='time_bins', method='linear', fill_value='extrapolate')
fig, axes = plt.subplots(nrows=3, ncols=4, figsize=(18, 12))
for i, season in enumerate(band_data.B02):
ax = axes.flat[i]
cax = band_data.B02.isel(time_bins=i).plot(ax=ax)for i, ax in enumerate(axes.flat):
ax.axes.get_xaxis().set_ticklabels([])
ax.axes.get_yaxis().set_ticklabels([])
ax.axes.axis('tight')
ax.set_xlabel('')
ax.set_ylabel('')
ax.set_title(f'Month: {i+1}')plt.tight_layout()
plt.show()
```
![Per Month](images/per_month.png)### PatchesDataset usage example
Please refer to the provided [notebook](https://github.com/Orion-AI-Lab/S4A/blob/main/s4a-dataloaders.ipynb) for a detailed usage example of the provided `PatchesDataset`.
1. Read the COCO file to be used.
```python3
from pathlib import Path
from pycocotools.coco import COCO
root_path_coco = Path('coco_files/')
coco_train = COCO(root_path_coco / 'coco_example.json')
```2. Initialize the PatchesDataset.
```python3
from torch.utils.data import DataLoader
from patches_dataset import PatchesDataset
from utils.config import LINEAR_ENCODER
root_path_netcdf = Path('dataset/netcdf') # Path to the netCDF files
dataset_train = PatchesDataset(root_path_netcdf=root_path_netcdf,
coco=coco_train,
group_freq='1MS',
prefix='test_patchesdataset',
bands=['B02', 'B03', 'B04'],
linear_encoder=LINEAR_ENCODER,
saved_medians=False,
window_len=6,
requires_norm=False,
return_masks=False,
clouds=False,
cirrus=False,
shadow=False,
snow=False,
output_size=(183, 183)
)
```3. Initialize the Dataloader.
```python3
dataloader_train = DataLoader(dataset_train,
batch_size=1,
shuffle=True,
num_workers=4,
pin_memory=True
)
```4. Get a batch.
```python3
batch = next(iter(dataloader_train))
```The `batch` variable is a dictionary containing the keys: `medians`, `labels`, `idx`.
`batch['medians']` contains a pytorch tensor of size `[1, 6, 3, 183, 183]` where:
- batch size: 1
- timestamps: 6
- bands: 3
- height: 183
- width: 183![Batch Medians](images/batch_medians.png)
`batch['labels']` contains the corresponding labels of the medians, which is a pytorch tensor of size `[1, 183, 183]` where:
- batch size: 1
- height: 183
- width: 183![Batch Labels](images/batch_labels.png)
`batch['idx']` contains the index of the returned timeseries.
### Webpage
Dataset Webpage: https://www.sen4agrinet.space.noa.gr/
### Experiments
Please visit [Sen4AgriNet-Models](https://github.com/Orion-AI-Lab/S4A-Models) for a complete experimentation pipeline using the Sen4AgriNet dataset.
### Citation
To cite please use:
```
@ARTICLE{
9749916,
author={Sykas, Dimitrios and Sdraka, Maria and Zografakis, Dimitrios and Papoutsis, Ioannis},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
title={A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning},
year={2022},
doi={10.1109/JSTARS.2022.3164771}
}
```