An open API service indexing awesome lists of open source software.

https://github.com/QiushiSun/Awesome-Code-Intelligence

Neural Code Intelligence Survey 2024; Reading lists and resources
https://github.com/QiushiSun/Awesome-Code-Intelligence

List: Awesome-Code-Intelligence

code-generation large-language-models

Last synced: 18 days ago
JSON representation

Neural Code Intelligence Survey 2024; Reading lists and resources

Awesome Lists containing this project

README

        

## Neural Code Intelligence Survey
This is the repository of our paper: **A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond**.

[![arXiv](https://img.shields.io/badge/arXiv-2403.14734-b31b1b.svg)](https://arxiv.org/abs/2403.14734)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/Naereen/StrapDown.js/graphs/commit-activity)
[![PR's Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat)](http://makeapullrequest.com)
[![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
![License](https://img.shields.io/badge/License-MIT-blue)
[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-sm.svg)](https://huggingface.co/papers/2403.14734)
[![Twitter Follow](https://img.shields.io/twitter/follow/qiushi_sun)](https://twitter.com/qiushi_sun)

*Please do not hesitate to contact us or launch pull requests if you find any related papers that are missing in our paper.*

## News ๐Ÿ“ฐ
- Update on 2025/01/26: Version 1.6 released with additional topics on code preference learning ๐Ÿ“–
- Update on 2024/11/01: Version 1.4 released with extra paper collections ๐Ÿ“–
- Update on 2024/06/23: Version 1.2 released ๐Ÿš€
- Update on 2024/03/19: Version 1.0 released ๐Ÿš€
- Update on 2024/01/19: Add multiple reading lists ๐Ÿ“–
- Update on 2023/12/29: Add Development Timelines ๐Ÿ“…
- Update on 2023/12/25: Add Reading Lists, Merry Christmas ๐ŸŽ๐ŸŽ„

## Introduction ๐Ÿ“œ

๐Ÿ“ƒ [**A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond**](https://arxiv.org/abs/2403.14734)
>
> [Qiushi Sun](https://qiushisun.github.io/),
[Zhirui Chen](https://github.com/jet1004),
[Fangzhi Xu](https://xufangzhi.github.io/),
[Kanzhi Cheng](https://scholar.google.com/citations?user=S2IPVnwAAAAJ&hl=zh-CN),
[Chang Ma](https://chang-github-00.github.io/-changma/),
[Zhangyue Yin](https://scholar.google.com/citations?user=9gRQqSkAAAAJ&hl=en),
[Jianing Wang](https://wjn1996.github.io/),
[Chengcheng Han](https://hccngu.github.io/),
[Renyu Zhu](https://scholar.google.com/citations?user=tSWULnAAAAAJ&hl=en),
[Shuai Yuan](https://github.com/Luciferder),
[Qipeng Guo](https://scholar.google.com/citations?user=k3mPGKgAAAAJ&hl=en),
[Xipeng Qiu](https://xpqiu.github.io/),
[Pengcheng Yin](https://pengcheng.in/),
[Xiaoli Li](https://www.a-star.edu.sg/i2r/about-i2r/i2r-management/li-xiaoli),
[Fei Yuan](https://github.com/CONE-MT),
[Lingpeng Kong](https://ikekonglp.github.io/),
[Xiang Li](https://lixiang3776.github.io/),
[Zhiyong Wu](https://lividwo.github.io/zywu.github.io/)

Introducing the resources provided by our survey paper, slides is also available at [here](assets/NCI_Survey_Slides_V1.pdf).

## Timeline

The Development of Code Intelligence

![milestones](assets/codelms-tree-v18.png)

## Recent Work on Code Intelligence (Welcome PR) ๐Ÿ“—

- [CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction](https://arxiv.org/abs/2502.07316) 2025.2
- [Competitive Programming with Large Reasoning Models](https://arxiv.org/abs/2502.06807) 2025.2
- [EpiCoder: Encompassing Diversity and Complexity in Code Generation](https://arxiv.org/abs/2501.04694v1) 2025.1
- [WarriorCoder: Learning from Expert Battles to Augment Code Large Language Models](https://arxiv.org/abs/2412.17395) 2024.12
- [FullStack Bench: Evaluating LLMs as Full Stack Coders](https://arxiv.org/abs/2412.00535) 2024.12
- [CodeDPO: Aligning Code Models with Self Generated and Verified Source Code](https://arxiv.org/abs/2410.05605) 2024.11
- [OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models](https://opencoder-llm.github.io/) 2024.11
- [Qwen2.5-Coder Series: Powerful, Diverse, Practical.](https://github.com/QwenLM/Qwen2.5-Coder) 2024.11

## Paper Collections / Tutorials ๐Ÿ“š

- [Language Models for Code](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/CodeLMs.md) ๐Ÿค–
- [Evaluations and Benchmarks](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/Benchmarks.md) ๐Ÿ“Š
- [Preference Optimization](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/Preference-Optimization.md) ๐ŸŽ
- [Code Repair](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/Repair.md) ๐Ÿ”ง
- [Reasoning with Code Synthesis](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/Reasoning.md) ๐Ÿง 
- [Data Science](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/DS.md) ๐Ÿ”ข
- [Corpus containing Code Data](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/Code-corpus.md) ๐Ÿ“š
- [Code-Based Solutions for NLP Tasks](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/NLPTasks-through-code.md) ๐Ÿ“
- [Code Empowered Agents](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/CodeLM-empowered-agents.md) ๐Ÿค–
- [Reinforcement Learning with CodeLMs](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/RL-with-CodeLMs.md) ๐ŸŽฎ
- [Code Intelligence assists AI4Science](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/AI4Science.md) ๐Ÿงช
- [Software Development](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/Software-Development.md) ๐Ÿ› ๏ธ
- [Multilingual](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/multilingual.md) ๐ŸŒ
- [Multimodal Code Generation](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/Multimodal.md) ๐ŸŽจ
- [Awesome Slides, Talks and Blogs](https://github.com/QiushiSun/NCISurvey/blob/main/paper-reading/tutorials.md) ๐Ÿง‘โ€๐Ÿซ

## Citation ๐Ÿ“–

๐Ÿซถ If you are interested in our work or find this repository helpful, please consider using the following citation format when referencing our paper:

```bibtex
@article{sun2024survey,
title={A survey of neural code intelligence: Paradigms, advances and beyond},
author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
journal={arXiv preprint arXiv:2403.14734},
year={2024}
}
```

## Acknowledgements

This is an open collaborative research project among:


Shark-NLP Shanghai AI Lab


Shark-NLP Shanghai AI Lab


NUS


A*STAR


A*STAR


A*STAR


A*STAR

## Repository Contributors









## Star History ๐ŸŒŸ

[![Star History Chart](https://api.star-history.com/svg?repos=QiushiSun/Awesome-Code-Intelligence&type=Date)](https://star-history.com/#QiushiSun/Awesome-Code-Intelligence&Date)