Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Quantmetry/awesome_quantmetry
A list of repositories commonly used @ Quantmetry
https://github.com/Quantmetry/awesome_quantmetry
List: awesome_quantmetry
data-engineering machine-learning pioneers statistics
Last synced: 16 days ago
JSON representation
A list of repositories commonly used @ Quantmetry
- Host: GitHub
- URL: https://github.com/Quantmetry/awesome_quantmetry
- Owner: Quantmetry
- Created: 2019-02-01T16:57:38.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-07-03T07:39:13.000Z (over 5 years ago)
- Last Synced: 2024-05-23T07:38:59.336Z (7 months ago)
- Topics: data-engineering, machine-learning, pioneers, statistics
- Homepage: https://quantmetry.com
- Size: 11.7 KB
- Stars: 14
- Watchers: 4
- Forks: 2
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome_quantmetry - A list of repositories commonly used @ Quantmetry. (Other Lists / Monkey C Lists)
README
# awesome_quantmetry
![alt text][qm-contrib-head]**A list of repositories commonly used at [Quantmetry](https://quantmetry.com)**
## Statistics / Machine Learning building blocks
* [scikit-learn](https://github.com/scikit-learn/scikit-learn)
* [statsmodels](https://github.com/statsmodels/statsmodels)
* [imbalanced-learn](https://github.com/scikit-learn-contrib/imbalanced-learn) (scikit-contrib)
* [keras](https://github.com/keras-team/keras)## Interpretability / Explainable AI
* [SHAP](https://github.com/slundberg/shap)
* [skope-rules](https://github.com/scikit-learn-contrib/skope-rules) (scikit-contrib) ![alt text][qm-contrib]
* [Quantmetry intelligibility resources](https://github.com/Quantmetry/resources-intelligibility)
* [JP-Hall ML-Interpretability awesome list](https://github.com/jphall663/awesome-machine-learning-interpretability)## Natural Language Processing
* [spaCy](https://github.com/explosion/spaCy)
* [NLTK](https://github.com/nltk/nltk)
* [gensim](https://github.com/rare-technologies/gensim)
* [pyLDAvis](https://github.com/bmabey/pyLDAvis)
* [melusine](https://github.com/MAIF/melusine) ![alt text][qm-contrib]
* [Mozilla's implementation of Baidu's DeepSpeech](https://github.com/mozilla/DeepSpeech)## Computer Vision
* [OpenCV](https://github.com/opencv/opencv)
* [scikit-image](https://github.com/scikit-image/scikit-image)
* [retinanet](https://github.com/fizyr/keras-retinanet)
* [OpenCV](https://github.com/opencv/opencv)
* [MaskRCNN](https://github.com/matterport/Mask_RCNN)## Time Series
* [tsfresh](https://github.com/blue-yonder/tsfresh)
* [Facebook Prophet](https://github.com/facebook/prophet)
* [statsmodels](https://github.com/statsmodels/statsmodels)
* [scikit-survival](https://github.com/sebp/scikit-survival)## Data Engineering / deployment
* [Airflow](https://github.com/apache/airflow)
* [PySpark](https://github.com/apache/spark/tree/master/python/pyspark)
* [kafka-confluent](https://github.com/confluentinc/confluent-kafka-python)
* [pipeasy-spark](https://github.com/Quantmetry/pipeasy-spark) ![alt text][qm-contrib]## Web/DataViz
* [Flask](https://github.com/pallets/flask)
* [Dash](https://github.com/plotly/dash)
* [pandas-profiling](https://github.com/pandas-profiling/pandas-profiling)
* [missingno](https://github.com/ResidentMario/missingno)[qm-contrib]: https://img.shields.io/static/v1.svg?label=&message=contributor&color=1A829E
[qm-contrib-head]: https://img.shields.io/static/v1.svg?label=QM&message=open-source&color=1A829E