Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SimonVandenhende/Awesome-Multi-Task-Learning
A list of multi-task learning papers and projects.
https://github.com/SimonVandenhende/Awesome-Multi-Task-Learning
List: Awesome-Multi-Task-Learning
computer-vision machine-learning multitask-learning research
Last synced: 3 months ago
JSON representation
A list of multi-task learning papers and projects.
- Host: GitHub
- URL: https://github.com/SimonVandenhende/Awesome-Multi-Task-Learning
- Owner: SimonVandenhende
- Created: 2020-08-24T07:41:31.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-01-31T17:47:22.000Z (almost 3 years ago)
- Last Synced: 2024-05-19T20:13:34.433Z (8 months ago)
- Topics: computer-vision, machine-learning, multitask-learning, research
- Homepage:
- Size: 270 KB
- Stars: 352
- Watchers: 16
- Forks: 51
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-interesting-topics-in-nlp - CV
- awesome-machine-learning-resources - **[List - Multi-Task-Learning?style=social) (Table of Contents)
- ultimate-awesome - Awesome-Multi-Task-Learning - A list of multi-task learning papers and projects. . (Other Lists / Monkey C Lists)
README
# Awesome Multi-Task Learning
This page contains a list of papers on multi-task learning for computer vision.
Please create a pull request if you wish to add anything.
If you are interested, consider reading our recent survey paper.> [**Multi-Task Learning for Dense Prediction Tasks: A Survey**](https://arxiv.org/abs/2004.13379)
>
> [Simon Vandenhende](https://twitter.com/svandenh1), [Stamatios Georgoulis](https://twitter.com/stam_g), Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai and Luc Van Gool.## Workshop
:loudspeaker: :loudspeaker: :loudspeaker: We organized a **workshop** on multi-task learning at ICCV 2021 ([Link](https://sites.google.com/view/deepmtlworkshop/home)).
- Jan 13: The recordings of our invited talks are now available on [Youtube](https://youtube.com/playlist?list=PLJwr5SeuN6XMXbWxnzwD1e7n-aOOJpWJn).
## Table of Contents:
- [Survey papers](#survey)
- [Datasets](#datasets)
- [Architectures](#architectures)
- [Encoder-based](#encoder)
- [Decoder-based](#decoder)
- [Other](#otherarchitectures)
- [Neural Architecture Search](#nas)
- [Optimization strategies](#optimization)
- [Transfer learning](#transfer)
## Survey papers
- Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., & Van Gool, L.
*[Multi-Task Learning for Dense Prediction Tasks: A Survey](https://ieeexplore.ieee.org/abstract/document/9336293)*,
T-PAMI, 2020. [[PyTorch](https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch)]- Ruder, S.
*[An overview of multi-task learning in deep neural networks](https://arxiv.org/abs/1706.05098)*,
ArXiv, 2017.- Zhang, Y.
*[A survey on multi-task learning](https://arxiv.org/abs/1707.08114)*,
ArXiv, 2017.- Gong, T., Lee, T., Stephenson, C., Renduchintala, V., Padhy, S., Ndirango, A., ... & Elibol, O. H.
*[A comparison of loss weighting strategies for multi task learning in deep neural networks](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8848395)*,
IEEE Access, 2019.
## Datasets
The following datasets have been regularly used in the context of multi-task learning:- [NYUDv2](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html)
- [Cityscapes](https://www.cityscapes-dataset.com/)
- [PASCAL](https://github.com/facebookresearch/astmt)
- [Taskonomy](https://github.com/StanfordVL/taskonomy)
- [KITTI](http://www.cvlibs.net/datasets/kitti/)
- [SUN RGB-D](https://rgbd.cs.princeton.edu/)
- [BDD100K](https://arxiv.org/pdf/1805.04687.pdf)
### Encoder-based architectures- Misra, I., Shrivastava, A., Gupta, A., & Hebert, M.
*[Cross-stitch networks for multi-task learning](https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Misra_Cross-Stitch_Networks_for_CVPR_2016_paper.html)*,
CVPR, 2016. [[PyTorch](https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch)]- Gao, Y., Ma, J., Zhao, M., Liu, W., & Yuille, A. L.
*[Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction](https://openaccess.thecvf.com/content_CVPR_2019/html/Gao_NDDR-CNN_Layerwise_Feature_Fusing_in_Multi-Task_CNNs_by_Neural_Discriminative_CVPR_2019_paper.html)*,
CVPR, 2019. [[Tensorflow](https://github.com/ethanygao/NDDR-CNN)] [[PyTorch](https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch)]- Liu, S., Johns, E., & Davison, A. J.
*[End-to-end multi-task learning with attention](https://arxiv.org/abs/1803.10704)*,
CVPR, 2019. [[PyTorch](https://github.com/lorenmt/mtan)]
### Decoder-based architectures- Bilen, H., Vedaldi, A.
*[Integrated perception with recurrent multi-task neural networks](https://proceedings.neurips.cc/paper/2016/file/06409663226af2f3114485aa4e0a23b4-Paper.pdf)*,
NeurIPS, 2016.- Xu, D., Ouyang, W., Wang, X., & Sebe, N.
*[Pad-net: Multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing](https://openaccess.thecvf.com/content_cvpr_2018/html/Xu_PAD-Net_Multi-Tasks_Guided_CVPR_2018_paper.html)*,
CVPR, 2018.- Zhang, Z., Cui, Z., Xu, C., Jie, Z., Li, X., & Yang, J.
*[Joint task-recursive learning for semantic segmentation and depth estimation](https://openaccess.thecvf.com/content_ECCV_2018/html/Zhenyu_Zhang_Joint_Task-Recursive_Learning_ECCV_2018_paper.html)*,
ECCV, 2018.- Ruder, S., Bingel, J., Augenstein, I., & Søgaard, A.
*[Latent multi-task architecture learning](https://www.aaai.org/ojs/index.php/AAAI/article/view/4410)*,
AAAI, 2019.- Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., & Yang, J.
*[Pattern-affinitive propagation across depth, surface normal and semantic segmentation](https://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pattern-Affinitive_Propagation_Across_Depth_Surface_Normal_and_Semantic_Segmentation_CVPR_2019_paper.html)*,
CVPR, 2019.- Zhou, L., Cui, Z., Xu, C., Zhang, Z., Wang, C., Zhang, T., & Yang, J.
*[Pattern-Structure Diffusion for Multi-Task Learning](https://openaccess.thecvf.com/content_CVPR_2020/html/Zhou_Pattern-Structure_Diffusion_for_Multi-Task_Learning_CVPR_2020_paper.html)*,
CVPR, 2020.- Vandenhende, S., Georgoulis, S., & Van Gool, L.
*[MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning](https://arxiv.org/abs/2001.06902)*,
ECCV, 2020. [[PyTorch](https://github.com/SimonVandenhende/Multi-Task-Learning-PyTorch)]
### Other
- Yang, Y., & Hospedales, T.
*[Deep multi-task representation learning: A tensor factorisation approach](https://arxiv.org/abs/1605.06391)*,
ICLR, 2017.- Kokkinos, Iasonas.
*[Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory](https://openaccess.thecvf.com/content_cvpr_2017/html/Kokkinos_Ubernet_Training_a_CVPR_2017_paper.html)*,
CVPR, 2017.- Rebuffi, S. A., Bilen, H., & Vedaldi, A.
*[Learning multiple visual domains with residual adapters](https://arxiv.org/abs/1705.08045)*,
NIPS, 2017.- Long, M., Cao, Z., Wang, J., & Philip, S. Y.
*[Learning multiple tasks with multilinear relationship networks](http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-deep-relationship-networks)*,
NIPS, 2017.- Meyerson, E., & Miikkulainen, R.
*[Beyond shared hierarchies: Deep multitask learning through soft layer ordering](https://arxiv.org/abs/1711.00108)*,
ICLR, 2018.- Rosenbaum, C., Klinger, T., & Riemer, M.
*[Routing networks: Adaptive selection of non-linear functions for multi-task learning](https://arxiv.org/abs/1711.01239)*,
ICLR, 2018.- Mallya, A., Davis, D., & Lazebnik, S.
*[Piggyback: Adapting a single network to multiple tasks by learning to mask weights](https://openaccess.thecvf.com/content_ECCV_2018/html/Arun_Mallya_Piggyback_Adapting_a_ECCV_2018_paper.html)*,
ECCV, 2018.- Rebuffi, S. A., Bilen, H., & Vedaldi, A.
*[Efficient parametrization of multi-domain deep neural networks](https://arxiv.org/abs/1803.10082)*,
CVPR, 2018.- Maninis, K. K., Radosavovic, I., & Kokkinos, I.
*[Attentive single-tasking of multiple tasks](https://arxiv.org/abs/1904.08918)*,
CVPR, 2019. [[PyTorch](https://github.com/facebookresearch/astmt)]- Kanakis, M., Bruggemann, D., Saha, S., Georgoulis, S., Obukhov, A., & Van Gool, L.
*[Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference](https://arxiv.org/abs/2007.12540)*,
ECCV, 2020.- Wang, Q., Ke, J., Greaves, J., Chu, G., Bender, G., Sbaiz, L., Go, A., Howard, A., Yang, F., Yang, M.H. & Gilbert, J.
*[Multi-path Neural Networks for On-device Multi-domain Visual Classification](https://arxiv.org/pdf/2010.04904.pdf)*,
WACV, 2021.- Bruggemann, D., Kanakis, M., Obukhov, A., Georgoulis, S., & Van Gool, L. *[Exploring Relational Context for Multi-Task Dense Prediction](https://arxiv.org/abs/2104.13874)*, ArXiv, 2021.
- Li, W. H., Liu, X., & Bilen, H. *[Universal Representation Learning from Multiple Domains for Few-shot Classification](https://openaccess.thecvf.com/content/ICCV2021/papers/Li_Universal_Representation_Learning_From_Multiple_Domains_for_Few-Shot_Classification_ICCV_2021_paper.pdf)*, ICCV, 2021.
- Li, W. H., Liu, X., & Bilen, H. *[Learning Multiple Dense Prediction Tasks from Partially Annotated Data](https://arxiv.org/pdf/2111.14893.pdf)*, ArXiv, 2021.
- Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., & Feris, R.
*[Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification](https://openaccess.thecvf.com/content_cvpr_2017/html/Lu_Fully-Adaptive_Feature_Sharing_CVPR_2017_paper.html)*,
CVPR, 2017.- Bragman, F. J., Tanno, R., Ourselin, S., Alexander, D. C., & Cardoso, J.
*[Stochastic filter groups for multi-task cnns: Learning specialist and generalist convolution kernels](https://openaccess.thecvf.com/content_ICCV_2019/html/Bragman_Stochastic_Filter_Groups_for_Multi-Task_CNNs_Learning_Specialist_and_Generalist_ICCV_2019_paper.html)*,
ICCV, 2019.- Newell, A., Jiang, L., Wang, C., Li, L. J., & Deng, J.
*[Feature partitioning for efficient multi-task architectures](https://arxiv.org/abs/1908.04339)*,
ArXiv, 2019.- Guo, P., Lee, C. Y., & Ulbricht, D.
*[Learning to Branch for Multi-Task Learning](https://proceedings.icml.cc/static/paper_files/icml/2020/5057-Paper.pdf)*,
ICML, 2020.- Standley, T., Zamir, A. R., Chen, D., Guibas, L., Malik, J., & Savarese, S.
*[Which Tasks Should Be Learned Together in Multi-task Learning?](https://arxiv.org/pdf/1905.07553.pdf)*,
ICML, 2020.- Vandenhende, S., Georgoulis, S., De Brabandere, B., & Van Gool, L.
*[Branched multi-task networks: deciding what layers to share](https://arxiv.org/abs/1904.02920)*,
BMVC, 2020.- Bruggemann, D., Kanakis, M., Georgoulis, S., & Van Gool, L.
*[Automated Search for Resource-Efficient Branched Multi-Task Networks](https://arxiv.org/abs/2008.10292)*,
BMVC, 2020.- Sun, X., Panda, R., & Feris, R.
*[AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning](https://arxiv.org/abs/1911.12423)*,
NIPS, 2020.- Kendall, A., Gal, Y., & Cipolla, R.
*[Multi-task learning using uncertainty to weigh losses for scene geometry and semantics](https://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html)*,
CVPR, 2018.- Zhao, X., Li, H., Shen, X., Liang, X., & Wu, Y.
*[A modulation module for multi-task learning with applications in image retrieval](https://openaccess.thecvf.com/content_ECCV_2018/html/Xiangyun_Zhao_A_Modulation_Module_ECCV_2018_paper.html)*,
ECCV, 2018.- Chen, Z., Badrinarayanan, V., Lee, C. Y., & Rabinovich, A.
*[Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks](http://proceedings.mlr.press/v80/chen18a.html)*,
ICML, 2018.- Sener, O., & Koltun, V.
*[Multi-task learning as multi-objective optimization](http://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization)*,
NIPS, 2018. [[PyTorch](https://github.com/intel-isl/MultiObjectiveOptimization)]- Liu, P., Qiu, X., & Huang, X.
*[Adversarial multi-task learning for text classification](https://www.aclweb.org/anthology/P17-1001.pdf)*,
ACL, 2018.- Guo, M., Haque, A., Huang, D. A., Yeung, S., & Fei-Fei, L.
*[Dynamic task prioritization for multitask learning](https://openaccess.thecvf.com/content_ECCV_2018/html/Michelle_Guo_Focus_on_the_ECCV_2018_paper.html)*,
ECCV, 2018.- Lin, X., Zhen, H. L., Li, Z., Zhang, Q. F., & Kwong, S.
*[Pareto multi-task learning](https://papers.nips.cc/paper/9374-pareto-multi-task-learning)*,
NIPS, 2019.- Suteu, M., & Guo, Y.
*[Regularizing Deep Multi-Task Networks using Orthogonal Gradients](https://arxiv.org/abs/1912.06844)*,
ArXiv, 2019.- Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., & Finn, C.
*[Gradient surgery for multi-task learning](https://arxiv.org/abs/2001.06782)*,
NIPS, 2020. [[Tensorflow](https://github.com/tianheyu927/PCGrad)]- Chen, Z., Ngiam, J., Huang, Y., Luong, T., Kretzschmar, H., Chai, Y., & Anguelov, D.
*[Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout](https://arxiv.org/pdf/2010.06808.pdf)*,
NIPS, 2020.- Li, W. H., & Bilen, H.
*[Knowledge Distillation for Multi-task Learning](https://arxiv.org/pdf/2007.06889.pdf)*,
ECCV-Workshop, 2020. [[PyTorch](https://github.com/WeiHongLee/KD-MTL)]- Borse, S., Wang, Y., Zhang, Y., & Porikli, F. *[InverseForm: A Loss Function for Structured Boundary-Aware Segmentation](https://openaccess.thecvf.com/content/CVPR2021/papers/Borse_InverseForm_A_Loss_Function_for_Structured_Boundary-Aware_Segmentation_CVPR_2021_paper.pdf)*, CVPR 2021.
- Vasu P., Saxena S., Tuzel O. *[Instance-Level Task Parameters: A Robust Multi-task Weighting Framework](https://arxiv.org/pdf/2106.06129.pdf)*, ArXiv, 2021.
## Transfer learning & Domain Adaptation- Cui, Y., Song, Y., Sun, C., Howard, A., & Belongie, S.
*[Large scale fine-grained categorization and domain-specific transfer learning](https://openaccess.thecvf.com/content_cvpr_2018/html/Cui_Large_Scale_Fine-Grained_CVPR_2018_paper.html)*,
CVPR, 2018.- Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., & Savarese, S.
*[Taskonomy: Disentangling task transfer learning](https://openaccess.thecvf.com/content_cvpr_2018/html/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.html)*,
CVPR, 2018. [[PyTorch](https://github.com/StanfordVL/taskonomy)]- Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji, S., Fowlkes, C. C., ... & Perona, P.
*[Task2vec: Task embedding for meta-learning](https://openaccess.thecvf.com/content_ICCV_2019/html/Achille_Task2Vec_Task_Embedding_for_Meta-Learning_ICCV_2019_paper.html)*,
ICCV, 2019. [[PyTorch](https://github.com/awslabs/aws-cv-task2vec)]- Dwivedi, K., & Roig, G.
*[Representation similarity analysis for efficient task taxonomy & transfer learning](https://openaccess.thecvf.com/content_CVPR_2019/html/Dwivedi_Representation_Similarity_Analysis_for_Efficient_Task_Taxonomy__Transfer_Learning_CVPR_2019_paper.html)*,
CVPR, 2019. [[PyTorch](https://github.com/kshitijd20/RSA-CVPR19-release)]- Saha, S., Obukhov, A., Paudel, D. P., Kanakis, M., Chen, Y., Georgoulis, S., & Van Gool, L. *[Learning to Relate Depth and Semantics for Unsupervised Domain Adaptation](https://openaccess.thecvf.com/content/CVPR2021/papers/Saha_Learning_To_Relate_Depth_and_Semantics_for_Unsupervised_Domain_Adaptation_CVPR_2021_paper.pdf)*, CVPR, 2021.
## Robustness
- Mao, C., Gupta, A., Nitin, V., Ray, B., Song, S., Yang, J., & Vondrick, C.
*[Multitask Learning Strengthens Adversarial Robustness](http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123470154.pdf)*,
ECCV, 2020. [[PyTorch](https://github.com/columbia/MTRobust)]- Zamir, A. R., Sax, A., Cheerla, N., Suri, R., Cao, Z., Malik, J., & Guibas, L. J.
*[Robust Learning Through Cross-Task Consistency](https://openaccess.thecvf.com/content_CVPR_2020/html/Zamir_Robust_Learning_Through_Cross-Task_Consistency_CVPR_2020_paper.html)*,
CVPR, 2020.- Georgescu, M. I., Barbalau, A., Ionescu, R. T., Khan, F. S., Popescu, M., & Shah, M. *[Anomaly Detection in Video via Self-Supervised and Multi-Task Learning](https://openaccess.thecvf.com/content/CVPR2021/papers/Georgescu_Anomaly_Detection_in_Video_via_Self-Supervised_and_Multi-Task_Learning_CVPR_2021_paper.pdf)*, CVPR, 2021.
## Other
- Eftekhar, A.,Sax, A., Malik, J., Zamir, A. *[Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets From 3D Scans](https://openaccess.thecvf.com/content/ICCV2021/html/Eftekhar_Omnidata_A_Scalable_Pipeline_for_Making_Multi-Task_Mid-Level_Vision_Datasets_ICCV_2021_paper.html)*, ICCV, 2021.